首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An emerging area of research in autism spectrum disorder (ASD) is the role of prenatal exposure to inflammatory mediators during critical developmental periods. Epidemiological data has highlighted this relationship showing significant correlations between prenatal exposure to pathogens, including influenza, and the occurrence of ASD. Although there has not been a definitive molecular mechanism established, researchers have begun to investigate this relationship as animal models of maternal infection have support- ed epidemiological findings. Several groups utilizing these animal models have found that activation of the maternal immune system, termed maternal immune activation (MIA), and more specifically the exposure of the developing fetus to maternal cytokines precipitate the neurological, immunological and behavioral abnormalities observed in the offspring of these animals. These abnormalities have correlated with clinical findings of immune dysregulation, neurological and behavioral abnormalities in some autistic individuals. Additionally, researchers have observed genetic variations in these models in genes which regulate neurological and immunological development, similar to what is observed clinically in ASD. Altogether, the role of MIA and cytokine dysregulation, as a key mediator in the neuropathological, behavioral and possibly genetic irregularities observed clinically in autism are important factors that warrant further investigation.  相似文献   

2.
Autism spectrum disorder (ASD) is a group of complex, neurological disorders that affect early cognitive, social, and verbal development. Our understanding of ASD has vastly improved with advances in genomic sequencing technology and genetic models that have identified >800 loci with variants that increase susceptibility to ASD. Although these findings have confirmed its high heritability, the underlying mechanisms by which these genes produce the ASD phenotypes have not been defined. Current efforts have begun to “functionalize” many of these variants and envisage how these susceptibility factors converge at key biochemical and biophysical pathways. In this review, we discuss recent work on intracellular calcium signaling in ASD, including our own work, which begins to suggest it as a compelling candidate mechanism in the pathophysiology of autism and a potential therapeutic target. We consider how known variants in the calcium signaling genomic architecture of ASD may exert their deleterious effects along pathways particularly involving organelle dysfunction including the endoplasmic reticulum (ER), a major calcium store, and the mitochondria, a major calcium ion buffer, and theorize how many of these pathways intersect.  相似文献   

3.
Constitutive activation of the MTOR pathway is a key feature of defects in the tuberous sclerosis complex and other genetic neurodevelopmental diseases, collectively referred to as MTORopathies. MTORC1 hyperactivity promotes anabolic cell functions such as protein synthesis, yet at the same time catabolic processes such as macroautophagy/autophagy are suppressed. Mitochondria are major substrates of autophagy; however, their role in MTORopathies remains largely undefined. Here, we review our recent study showing that several aspects of mitochondrial function, dynamics and turnover are critically impaired in neuronal models of TSC. We discuss the relevance of these findings to neurological manifestations associated with TSC and speculate on autophagy as a novel treatment target for MTORopathies.  相似文献   

4.
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.  相似文献   

5.
Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development.  相似文献   

6.
Proteins belonging to the TGFβ-stimulated clone 22 domain (TSC22D) family display a repertoire of activities, regulating cell proliferation and differentiation. The tumor suppressor activity of the first identified member of the family, TSC22D1 (formerly named TSC-22), has been extensively studied, but afterward a longer isoform encoded by the same gene turned out to play an opposite role. We have previously characterized the role of TSC22D1 and TSC22D4 in cell differentiation using granule neurons (GNs) isolated from the mouse cerebellum. However, the possibility to study the role of these factors in cell proliferation was limited by the fact that GNs readily exit from the cell-cycle and differentiate upon isolation and in vitro culture. To overcome this limitation, we have now exploited DAOY medulloblastoma cells, which are ontogenetically similar to cerebellar GNs and can be efficiently transfected with interfering RNA for gene knockdown purposes. Our findings indicate that TSC22D4–TSC22D1 short isoform heterodimers are involved in the escape from cell proliferation and exit from the cell-cycle, whereas, the TSC22D1 long isoform is required for cell proliferation, acting independently from TSC22D4. We also show that the silencing of specific expression of TSC22D4 or TSC22D1 isoforms affects the cell-cycle progression. These findings add a novel insight on the function of TSC22D proteins, with particular reference to the tumor suppressor activity of the TSC22D1 short isoform, which is re-framed within the context of a functional interplay with TSC22D4 and the mutually exclusive expression with the TSC22D1 long isoform.  相似文献   

7.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects social interactions and communication. The prevalence of ASD has risen dramatically in recent years, but the underlying factors leading to this rise are not clear. In this paper, we test whether changes in state-level educational policy that impact school-level resources are associated with the rise in ASD diagnostic prevalence. Early identification of ASD can improve an array of outcomes for children, and school systems play an important role with identification of the condition. It is plausible that children attending schools with better resources from state governments are more likely to receive an ASD diagnosis and presumably appropriate services. We focus on one educational policy in particular, state-level rewards, which consist of a monetary transfer from state governments to school districts. To test the impact of educational rewards on ASD diagnosis, we rely on policy variation across states and time and estimate both two-way fixed effects (TWFE) models alongside recently advanced methods in the difference-in-differences (DiD) literature. Under a baseline TWFE specification we estimate that rewards policies are associated with a 18.46% increase in ASD diagnosis. Further, using DiD methods that account for bias in settings of differential policy timing, we find that the magnitude of the effect increases to 24.8%. We believe these findings to be suggestive evidence that educational rewards policies improved the likelihood of detection and diagnosis of ASD.  相似文献   

8.
The molecular pathogenesis of ASD (autism spectrum disorder), one of the heritable neurodevelopmental disorders, is not well understood, although over 15 autistic‐susceptible gene loci have been extensively studied. A major issue is whether the proteins that these candidate genes encode are involved in general function and signal transduction. Several mutations in genes encoding synaptic adhesion molecules such as neuroligin, neurexin, CNTNAP (contactin‐associated protein) and CADM1 (cell‐adhesion molecule 1) found in ASD suggest that impaired synaptic function is the underlying pathogenesis. However, knockout mouse models of these mutations do not show all of the autism‐related symptoms, suggesting that gain‐of‐function in addition to loss‐of‐function arising from these mutations may be associated with ASD pathogenesis. Another finding is that family members with a given mutation frequently do not manifest autistic symptoms, which possibly may be because of gender effects, dominance theory and environmental factors, including hormones and stress. Thus epigenetic factors complicate our understanding of the relationship between these mutated genes and ASD pathogenesis. We focus in the present review on findings that ER (endoplasmic reticulum) stress arising from these mutations causes a trafficking disorder of synaptic receptors, such as GABA (γ‐aminobutyric acid) B‐receptors, and leads to their impaired synaptic function and signal transduction. In the present review we propose a hypothesis that ASD pathogenesis is linked not only to loss‐of‐function but also to gain‐of‐function, with an ER stress response to unfolded proteins under the influence of epigenetic factors.  相似文献   

9.
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by hamartomatous neurological lesions that exhibit abnormal cell proliferation and differentiation. Hyperactivation of mTOR pathway by mutations in either the Tsc1 or Tsc2 gene underlies TSC pathogenesis, but involvement of specific neural cell populations in the formation of TSC-associated neurological lesions remains unclear. We deleted Tsc1 in Emx1-expressing embryonic telencephalic neural stem cells (NSCs) and found that mutant mice faithfully recapitulated TSC neuropathological lesions, such as cortical lamination defects and subependymal nodules (SENs). These alterations were caused by enhanced generation of SVZ neural progeny, followed by their premature differentiation and impaired maturation during both embryonic and postnatal development. Notably, mTORC1-dependent Akt inhibition and STAT3 activation were involved in the reduced self-renewal and earlier neuronal and astroglial differentiation of mutant NSCs. Thus, finely tuned mTOR activation in embryonic NSCs may be critical to prevent development of TSC-associated brain lesions.  相似文献   

10.
Tuberous sclerosis complex (TSC) is a common neurological autosomal-dominant syndrome caused by mutations in the TSC1 or TSC2 genes. TSC starts in early childhood and is characterized by cerebral hamartomas (benign tumours), severe epilepsy and cognitive deficits such as mental retardation and autism. The hamartomas are characterized by loss of the remaining wild-type TSC allele, and clinical data implicate cerebral hamartomas in the generation of epileptic seizures, which may play a significant role in the development of mental retardation. The TSC2 mutation predicts alterations in mitogen-associated protein kinase (MAPK) and, together with the TSC1 mutation, in mammalian target of rapamycin (mTOR) signalling pathways. Both pathways are involved in neuronal plasticity. We therefore hypothesized that the heterozygous mutation itself, besides cerebral hamartomas, contributes to the pathogenesis of cognitive deficits and possibly also epilepsy. Here, we show that young adult TSC2+/- rats, which are virtually free of cerebral hamartomas, exhibit enhanced episodic-like memory and enhanced responses to chemically-induced kindling. The activation of cyclic adenosine monophosphate (cAMP) in the hippocampus results in stronger induction of phospho-p42-MAPK in TSC2+/- rats than in wild-type animals. Thus, the cognitive phenotype and, possibly, epilepsy in TSC patients may result not only from the focal hamartomatous lesions but also, from altered neuronal plasticity in the heterozygous tissue.  相似文献   

11.
Autism is one of the five disorders that falls under the umbrella of Pervasive Developmental Disorders (PDD) or Autism Spectrum Disorder (ASD), a category of neurological disorders characterized by "severe and pervasive impairment in several areas of development." ASD is characterized by varying degrees of impairment in communication skills, social interaction and restricted, repetitive stereotyped patterns of behavior. The five disorders under PDD are autistic disorder, Asperger's disorder, childhood disintegrative disorder, Rett's disorder and PDD-not otherwise specified. ASD can often be reliably detected by the age of 3 years and, in some cases, as early as 18 months. The appearance of any warning signs of ASD is reason to have the child evaluated by a professional specializing in these disorders.  相似文献   

12.
Tuberous sclerosis (TSC) is a tumor syndrome caused by mutation in TSC1 or TSC2 genes. TSC tumorigenesis is not always accompanied by loss of heterozygosity (LOH). Recently, extracellular signal-regulated kinase (Erk) has been found activated in TSC lesions lacking TSC1 or TSC2 LOH. Here, we show that Erk may play a critical role in TSC progression through posttranslational inactivation of TSC2. Erk-dependent phosphorylation leads to TSC1-TSC2 dissociation and markedly impairs TSC2 ability to inhibit mTOR signaling, cell proliferation, and oncogenic transformation. Importantly, expression of an Erk nonphosphorylatable TSC2 mutant in TSC2+/- tumor cells where Erk is constitutively activated blocks tumorigenecity in vivo, while wild-type TSC2 is ineffective. Our findings position the Ras/MAPK pathway upstream of the TSC complex and suggest that Erk may modulate mTOR signaling and contribute to disease progression through phosphorylation and inactivation of TSC2.  相似文献   

13.
《遗传学报》2020,47(12):735-742
Tuberous sclerosis complex (TSC) is a dominant genetic neurocutaneous syndrome characterized by multiple organ hamartomas. Although rodent models bearing a germline mutation in either TSC1 or TSC2 gene have been generated, they do not develop pathogenic lesions matching those seen in patients with TSC because of the significant differences between mice and humans, highlighting the need for an improved large animal model of TSC. Here, we successfully generate monoallelic TSC1-modified Bama miniature pigs using the CRISPR/Cas9 system along with somatic cell nuclear transfer (SCNT) technology. The expression of phosphorylated target ribosomal protein S6 is significantly enhanced in the piglets, indicating that disruption of a TSC1 allele activate the mechanistic target of rapamycin (mTOR) signaling pathway. Notably, differing from the mouse TSC models reported previously, the TSC1+/− Bama miniature pig developed cardiac rhabdomyoma and subependymal nodules, resembling the major clinical features that occur in patients with TSC. These TSC1+/− Bama miniature pigs could serve as valuable large animal models for further elucidation of the pathogenesis of TSC and the development of therapeutic strategies for TSC disease.  相似文献   

14.
Tuberous sclerosis (TSC) is an autosomal dominant disorder with both neurological and cutaneous manifestations often resulting in significant disability. Although it has been studied clinically and biochemically for many years, the underlying pathophysiology remains unknown. Genetic linkage analysis provides an alternative strategy for understanding the genetic etiology of this disease. Genetic linkage of a gene for TSC to loci in 9q32-9q34 has been reported but has not been a universal finding, since absence of linkage to 9q loci, as well as linkage to loci on 11q, have also been reported. We present here data on 22 families (21 previously unreported) segregating TSC. Our results strongly support a TSC locus in the 9q32-34 region for approximately one-third of families and provide significant evidence for genetic heterogeneity. Application of newly described highly polymorphic dinucleotide repeat marker loci in TSC greatly enhanced the informativeness of our pedigrees and was vital for detecting the heterogeneity. No clear evidence of linkage to chromosome 11q22 markers was found, suggesting that a still unidentified TSC locus elsewhere in the genome may account for the majority of TSC families.  相似文献   

15.
Tuberous sclerosis complex (TSC) is a genetic disease characterized by multiorgan benign tumors as well as neurological manifestations. Epilepsy and autism are two of the more prevalent neurological complications and are usually severe. TSC is caused by mutations in either the TSC1 (encodes hamartin) or the TSC2 (encodes tuberin) genes with TSC2 mutations being associated with worse outcomes. Tuberin contains a highly conserved GTPase‐activating protein (GAP) domain that indirectly inhibits mammalian target of rapamycin complex 1 (mTORC1). mTORC1 dysregulation is currently thought to cause much of the pathogenesis in TSC but mTORC1‐independent mechanisms may also contribute. We generated a novel conditional allele of Tsc2 by flanking exons 36 and 37 with loxP sites. Mice homozygous for this knock‐in Tsc2 allele are viable and fertile with normal appearing growth and development. Exposure to Cre recombinase then creates an in‐frame deletion involving critical residues of the GAP domain. Homozygous conditional mutant mice generated using Emx1Cre have increased cortical mTORC1 signaling, severe developmental brain anomalies, seizures, and die within 3 weeks. We found that the normal levels of the mutant Tsc2 mRNA, though GAP‐deficient tuberin protein, appear unstable and rapidly degraded. This novel animal model will allow further study of tuberin function including the requirement of the GAP domain for protein stability. genesis 51:284–292. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Ng S  Wu YT  Chen B  Zhou J  Shen HM 《Autophagy》2011,7(10):1173-1186
It has been well documented that cells deficient in either TSC1 or TSC2 are highly sensitive to various cell death stimuli. In this study, we utilized the TSC2 (-/-) mouse embryonic fibroblasts (MEFs) to study the involvement of autophagy in the enhanced susceptibility of TSC2-null cells to cell death. We first confirmed that both TSC1-null and TSC2-null MEFs are more sensitive to apoptosis in response to amino acid starvation (EBSS) and hypoxia. Second, we found that both the basal and inducible autophagy in TSC2 (-/-) MEFs is impaired, mainly due to constitutive activation of mTORC1. Third, suppression of autophagy by chloroquine and Atg7 knockdown sensitizes TSC2 (+/+) cells, but not TSC2 (-/-) cells, to EBSS-induced cell death. Conversely, the inhibition of mTORC1 by raptor knockdown and rapamycin activates autophagy and subsequently rescues TSC2 (-/-) cells. Finally, in starved cells, nutrient supplementations (insulin-like growth factor-1 (IGF-1) and leucine) enhanced cell death in TSC2 (-/-) cells, but reduced cell death in TSC2 (+/+) cells. Taken together, these data indicate that constitutive activation of mTORC1 in TSC2 (-/-) cells leads to suppression of autophagy and enhanced susceptibility to stress-mediated cell death. Our findings thus provide new insights into the complex relationships among mTOR, autophagy and cell death, and support the possible autophagy-targeted intervention strategies for the treatment of TSC-related pathologies.  相似文献   

17.
Tuberous sclerosis (TSC) is a relatively common hamartoma syndrome caused by mutations in either of two genes, TSC1 and TSC2. Here we report comprehensive mutation analysis in 224 index patients with TSC and correlate mutation findings with clinical features. Denaturing high-performance liquid chromatography, long-range polymerase chain reaction (PCR), and quantitative PCR were used for mutation detection. Mutations were identified in 186 (83%) of 224 of cases, comprising 138 small TSC2 mutations, 20 large TSC2 mutations, and 28 small TSC1 mutations. A standardized clinical assessment instrument covering 16 TSC manifestations was used. Sporadic patients with TSC1 mutations had, on average, milder disease in comparison with patients with TSC2 mutations, despite being of similar age. They had a lower frequency of seizures and moderate-to-severe mental retardation, fewer subependymal nodules and cortical tubers, less-severe kidney involvement, no retinal hamartomas, and less-severe facial angiofibroma. Patients in whom no mutation was found also had disease that was milder, on average, than that in patients with TSC2 mutations and was somewhat distinct from patients with TSC1 mutations. Although there was overlap in the spectrum of many clinical features of patients with TSC1 versus TSC2 mutations, some features (grade 2-4 kidney cysts or angiomyolipomas, forehead plaques, retinal hamartomas, and liver angiomyolipomas) were very rare or not seen at all in TSC1 patients. Thus both germline and somatic mutations appear to be less common in TSC1 than in TSC2. The reduced severity of disease in patients without defined mutations suggests that many of these patients are mosaic for a TSC2 mutation and/or have TSC because of mutations in an as-yet-unidentified locus with a relatively mild clinical phenotype.  相似文献   

18.
One of the core symptoms of autism spectrum disorder (ASD) is impaired social interaction. Currently, no pharmacotherapies exist for this symptom due to complex biological underpinnings and distinct genetic models which fail to represent the broad disease spectrum. One convincing hypothesis explaining social deficits in human ASD patients is amotivation, however it is unknown whether mouse models of ASD represent this condition. Here we used two highly trusted ASD mouse models (male Shank3‐deficient [Shank3+/ΔC] mice modeling the monogenic etiology of ASD, and inbred BTBR mice [both male and female] modeling the idiopathic and highly polygenic pathology for ASD) to evaluate the level of motivation to engage in a social interaction. In the behavioral paradigms utilized, a social stimulus was placed in the open arm of the elevated plus maze (EPM), or the light compartment of the light‐dark box (LDB). To engage in a social interaction, mice were thus required to endure innately aversive conditions (open areas, height, and/or light). In the modified EPM paradigm, both Shank3+/ΔC and BTBR mice demonstrated decreased open‐arm engagement with a social stimulus but not a novel object, suggesting reduced incentive to engage in a social interaction in these models. However, these deficits were not expressed under the less severe aversive pressures of the LDB. Collectively, we show that ASD mouse models exhibit diminished social interaction incentive, and provide a new investigation strategy facilitating the study of the neurobiological mechanisms underlying social reward and motivation deficits in neuropsychiatric disorders.  相似文献   

19.
Epilepsy is a common neurological disorder and cause of significant morbidity and mortality. Although antiseizure medication is the first-line treatment for epilepsy, currently available medications are ineffective in a significant percentage of patients and have not clearly been demonstrated to have disease-specific effects for epilepsy. While seizures are usually intractable to medication in tuberous sclerosis complex (TSC), a common genetic cause of epilepsy, vigabatrin appears to have unique efficacy for epilepsy in TSC. While vigabatrin increases gamma-aminobutyric acid (GABA) levels, the precise mechanism of action of vigabatrin in TSC is not known. In this study, we investigated the effects of vigabatrin on epilepsy in a knock-out mouse model of TSC and tested the novel hypothesis that vigabatrin inhibits the mammalian target of rapamycin (mTOR) pathway, a key signaling pathway that is dysregulated in TSC. We found that vigabatrin caused a modest increase in brain GABA levels and inhibited seizures in the mouse model of TSC. Furthermore, vigabatrin partially inhibited mTOR pathway activity and glial proliferation in the knock-out mice in vivo, as well as reduced mTOR pathway activation in cultured astrocytes from both knock-out and control mice. This study identifies a potential novel mechanism of action of an antiseizure medication involving the mTOR pathway, which may account for the unique efficacy of this drug for a genetic epilepsy.  相似文献   

20.
AimThe present study attempted to test McCullough and Willoughby’s hypothesis that self-control mediates the relationships between religiosity and psychosocial outcomes. Specifically, this study examined whether trait self-control (TSC) mediates the relationship of identified-introjected religiosity with positive and negative health-related-feelings (HRF) in healthy Muslims.MethodsTwo hundred eleven French-speaking participants (116 females, 95 males; Mage = 28.15, SDage = 6.90) answered questionnaires. One hundred ninety participants were retained for the analyses because they reported to be healthy (105 females, 85 males; Mage = 27.72, SDage = 6.80). To examine the relationships between religiosity, TSC and HRF, two competing mediation models were tested using structural equation model analysis: While a starting model used TSC as mediator of the religiosity-HRF relationship, an alternative model used religiosity as mediator of the TSC-HRF relationship.ResultsThe findings revealed that TSC mediated the relationship between identified religiosity and positive HRF, and that identified religiosity mediated the relationship between TSC and positive and negative HRF, thereby validating both models. Moreover, the comparison of both models showed that the starting model explained 13.211% of the variance (goodness of fit = 1.000), whereas the alternative model explained 6.877% of the variance (goodness of fit = 0.987).ConclusionThese results show that the starting model is the most effective model to account for the relationships between religiosity, TSC, and HRF. Therefore, this study provides initial insights into how religiosity influences psychological health through TSC. Important practical implications for the religious education are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号