首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Lipid droplet (LD) in vegetative tissues has recently been implicated in environmental responses in plants, but its regulation and its function in stress tolerance are not well understood. Here, we identified a Membrane Occupation and Recognition Nexus 1 (MORN1) gene as a contributor to natural variations of stress tolerance through genome-wide association study in Arabidopsis thaliana. Characterization of its loss-of-function mutant and natural variants revealed that the MORN1 gene is a positive regulator of plant growth, disease resistance, cold tolerance, and heat tolerance. The MORN1 protein is associated with the Golgi and is also partly associated with LD. Protein truncations that disrupt these associations abolished the biological function of the MORN1 protein. Furthermore, the MORN1 gene is a positive regulator of LD abundance, and its role in LD number regulation and stress tolerance is highly linked. Therefore, this study identifies MORN1 as a positive regulator of LD abundance and a contributor to natural variations of stress tolerance. It implicates a potential involvement of Golgi in LD biogenesis and strongly suggests a contribution of LD to diverse processes of plant growth and stress responses.  相似文献   

4.
《Fungal biology》2021,125(11):891-904
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.  相似文献   

5.
6.
7.
脱水应答元件结合蛋白(Dehydration-responsive element binding proteins,DREBs)是一类重要的植物耐逆相关转录因子.蒙古沙冬青Ammopiptanthus mongolicus是中国西北荒漠区特有的强耐逆常绿阔叶灌木.为探明其AmDREB1F基因在耐受非生物逆境中的功能和...  相似文献   

8.
We studied the interaction of the day length, cytokinins, and gibberellins in the control of tuberization in potato (Solanum tuberosum L, cv. Desire) plants and derived transgenic plants with the inserted PHYB gene from Arabidopsis encoding the synthesis of phytochrome B apoprotein and put under the control of the 35S CaMV promoter. Plantlets were cultured in vitro on hormone-free MS medium containing 5% sucrose and kinetin (1 mg/l) or/and GA (0.5 and 1.0 mg/l), at long day (LD, a 16-h photoperiod), short day (SD, a 10-h photoperiod), or continuous darkness conditions. The content of cytokinins (Ck, zeatin, and zeatin riboside) in various plant organs was determined by the immunoenzyme method, and GA activity was measured in bioassay with dwarf pea. Potato plant transformation with the PHYB gene enhanced substantially tuber initiation inhibition by LD. Kinetin addition to culture medium enhanced tuberization and reduced Ck content in aboveground shoots and Ck redistribution in the favor of underground organs. GA addition to the culture medium suppressed tuberization and induced Ck accumulation in aboveground organs. We concluded that Ck role in tuberization depends on their predominant localization in above- or underground potato organs. The involvement of Ck and GA in the competitive relations between growing tubers and shoots is considered.  相似文献   

9.
10.
Summary Nodal cuttings from micropropagated potato plantlets give rise to microtubers when placed on Murashige and Skoog medium containing 6% sucrose and 2.5 mg/liter kinetin and incubated in the dark at 19°C. Microtubers produced from the cultivar Superior were shown to contain the same characteristic group of proteins as field-grown tubers. As with field-grown tubers, the 40 000-dalton major tuber glycoprotein, patatin, accumulated to high levels in microtubers, reaching 3.7±0.2 mg/g fresh weight after 90 d. Also in agreement with field-grown plants, stems and leaves of micropropagated plantlets did not contain detectable levels of patatin, but small amounts of an electrophoretically distinct form accumulated transiently in roots. Patatin mRNA is readily detectable in developing microtubers 15 d after transfer of the cuttings to inductive medium. Patatin mRNA was also present in roots, but as with field-grown plants, was 50- to 100-fold less abundant and could be distinguished from that in tubers by primer extension. Microtuber development and patatin accumulation were inhibited by gibberellic acid. This work was supported by grants 83-CRCR-1-1348 and 85-CRCR-I-1792 from the U.S. Department of Agriculture Competitive Grants program and with funds from the Texas Agricultural Experiment Station.  相似文献   

11.
Single-node cuttings of potato cultivars Jemseg, Katahdin, Russet Burbank and Superior were cultured on a multiplication medium containing MS salts and no growth regulators. Cultures were exposed to 8 h (SD) and 16 h (LD) photoperiodic regimes. The subsequent plantlets were excised and single node cuttings from each photoperiodic regime were placed under SD or LD on a second medium containing growth regulators which promoted tuberization. Production of microtubers was strongly influenced by genotype and by photoperiodic treatments. Superior produced stunted plantlets and some microtubers under SD conditions in the multiplication medium. The number of microtubers formed by Jemseg was not influenced by photoperiod. However, Katahdin and Russet Burbank formed fewer microtubers under LD-LD conditions compared to LD-SD, SD-SD and SD-LD regimes. Compared with the other regimes, LD-SD photoperiod generally promoted microtuber formation with larger diameters and significantly (p<0.05) greater fresh weight. The intensity of the tuberization stimulus was affected by daylength, and this was characterized by microtubers with secondary tubers, the growth of more than one axillary microtuber, and microtubers subtended by stolons. The maturity group of the potato cultivars and photoperiodic regime in vitro strongly influenced the production of microtubers. These results can be employed to adapt light regimes for multiplication and tuberization to the specific requirements for cultivars from different maturity groups, and thus increase the efficiency of potato multiplication protocols.  相似文献   

12.
A relationship between quantitative trait loci (QTLs) detected for in vitro and greenhouse growing conditions was studied in a backcross population of 155 genotypes derived from a haploid potato (Solanum tuberosum) and a diploid wild species (S. berthaultii). Both plant height and tuberization earliness were characterized under two growing conditions. Main-effect QTLs and QTLs identified only through interaction were detected for each of the traits. For traits associated with plant height as well as for traits associated with early tuberization, the most significant QTL detected for greenhouse cultivated plants was also found when the population was grown in vitro. The most significant QTL for earliness of tuberization in vitro, which was located on chromosome 8, coincides with that detected for sucrose concentration in leaf exudate. The absence of a S. berthaultii allele was associated both with a higher amount of sucrose in the exudate and with earlier in vitro tuber formation. Epistasis was found to have a significant effect on all traits investigated. The QTL model that included main-effect QTLs and all significant interactions explained 83–88% of the total genetic variance for each of the developmental traits. The possibility of using an in vitro system combined with marker-assisted selection for preliminary selection of early tuberizing clones is discussed.  相似文献   

13.
14.
ACBPs are implicated in acyl-CoA trafficking in many eukaryotes and some prokaryotes. Six genes encode proteins designated as AtACBP1-AtACBP6 in the Arabidopsis thaliana ACBP family. These ACBPs are conserved in the acyl-CoA-binding domain, but vary in size from 92 amino acids (10.4 kDa) to 668 amino acids (73.1 kDa), and are subcellularly localised to different compartments in plant cells. Results from in vitro binding assays show that their corresponding recombinant proteins exhibit differential binding affinities to acyl-CoA esters and phospholipids, implying that these ACBPs may have non-redundant biological functions in vivo. By using knockout/downregulated and overexpression lines of Arabidopsis ACBPs, recent investigations have revealed that in addition to their proposed roles in phospholipid metabolism, these ACBPs can influence plant development including early embryogenesis and leaf senescence, as well as plant stress responses including heavy metal resistance, oxidative stress, freezing tolerance and pathogen resistance. In this review, recent progress on the biochemical and functional analyses of Arabidopsis ACBPs, their links to metabolic/signalling pathways, and their potential applications in development of stress tolerance are discussed.  相似文献   

15.
16.
Nodal cuttings of in vitro grown potato plants (Solanum tuberosum, cv. Miranda) were transformed by a vector plasmid carrying ipt gene of Agrobacterium tumefaciens. From the initial teratoma stage 5 clones of transgenic plants (1, 2, 11, 13 and 15) were obtained, which displayed in varying degree shortening of the internodes, decrease of the leaf size, decrease of apical dominance and poor rooting. In addition, two of the clones (11 and 13) showed increased stolon and tuber formation. In all these clones the endogenous level of free cytokinins (CKs) was increased: from 40% in clone 11 to almost 300% in clone 1. Also free indole-3-acetic acid (IAA) level was increased, but to a lower degree; the maximal increase was 160% (clone 13). Applied kinetin or IAA (1 mg·l-1) strongly suppressed root and tuber formation in clones 11 and 13, although they did not affect or even stimulated these processes in control plants. For control plants the minimal medium sucrose concentration necessary for tuber initiation was 6% whereas in clone 11 plants 2% was sufficient. Different distribution of endogenous CKs and IAA was observed in clone 11 and control plants. The highest CK content was found in transgenic plants in stems and in controls in leaves. In clone 11 plants abscisic acid (ABA) level was significantly increased in comparison to the control throughout the cultivation period. Ethylene formation was strongly increased the first week after the subcultivation and later on the difference between transgenic and control plants rapidly diminished. Reactions of clone 11 plants to red (RL) and blue light (BL) were similar to reactions of control plants. In RL clone 11 plants were tall and thin with stunted leaves; in BL they had a teratoma-like appearance and formed a very high number of tubers. The role of hormones in these changes in growth and tuber formation is discussed.  相似文献   

17.
We studied the effect of ectopic AtCBF over-expression on physiological alterations that occur during cold exposure in frost-sensitive Solanum tuberosum and frost-tolerant Solanum commersonii . Relative to wild-type plants, ectopic AtCBF1 over-expression induced expression of COR genes without a cold stimulus in both species, and imparted a significant freezing tolerance gain in both species: 2 °C in S. tuberosum and up to 4 °C in S. commersonii . Transgenic S. commersonii displayed improved cold acclimation potential, whereas transgenic S. tuberosum was still incapable of cold acclimation. During cold treatment, leaves of wild-type S. commersonii showed significant thickening resulting from palisade cell lengthening and intercellular space enlargement, whereas those of S. tuberosum did not. Ectopic AtCBF1 activity induced these same leaf alterations in the absence of cold in both species. In transgenic S. commersonii , AtCBF1 activity also mimicked cold treatment by increasing proline and total sugar contents in the absence of cold. Relative to wild type, transgenic S. commersonii leaves were darker green, had higher chlorophyll and lower anthocyanin levels, greater stomatal numbers, and displayed greater photosynthetic capacity, suggesting higher productivity potential. These results suggest an endogenous CBF pathway is involved in many of the structural, biochemical and physiological alterations associated with cold acclimation in these Solanum species.  相似文献   

18.
Summary In recent years attempts have been made to supplement traditional breeding for the production of salt-tolerant plants with variability existing in cell culture. The potential causes suggested as an explanation for the limited success of the in vitro approach include: a) lack, or loss during selection, of regeneration capability; b) the development of epigenetically adapted cells; c) lack of correlation between the mechanisms of tolerance operating in cultured cells and mechanisms that operate in cells in the intact plant; and d) multigenicity of salt tolerance. The recent successful production of healthy, fertile, and genetically stable salt-tolerant regenerants from cells obtained from highly morphogenic explants which are selected early in culture (using one-step or short-term strategies) for salt tolerance, together with the demonstration that salt-sensitive plants can become tolerant by mutations in one or few genes, suggest that some of the potential limitations can be overcome and that some of them may not exist at all.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号