首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Pulsed laser-induced thermal damage in whole blood   总被引:2,自引:0,他引:2  
An investigation of the effects of laser irradiation with a wavelength of 532 nm and pulse duration of 10 ms on whole blood was performed in vitro. Threshold radiant exposures for coagulation were quantified and transient radiometric temperatures were measured. The progression of effects with increasing radiant exposure--from evaporation to coagulation-induced light scattering to aggregated coagulum formation to ablation--is described. Results indicate that coagulation and ablation occur at temperatures significantly in excess of those assumed in previous theoretical studies. An Arrhenius rate process analysis based on hemoglobin data indicates good agreement with experimental results.  相似文献   

4.
The model is based on the concept that non-linear lateral interaction at the inner plexiform layer accounts for most of the specialization and marked non-linearities in cat's retinal ganglion cell responses. The inputs to the lateral interaction processes are a spatio-temporal signal and its retarded, as suggested by the behaviour of simple ganglion cells. Lateral interaction in the model consists of lateral linear inhibition followed by local half wave rectification. The resulting signals are weighted and summated by the ganglion cell thereafter. A transparent and general expression is obtained for the response of the cell model which, albeit its simplicity, leads to most of known types of non-linear responses, including the rarely encountered specialized cells in cat's, retina, except colour coding units. For negligible lateral interaction, the model reduces to spatio-temporal linear models under the two paths hypothesis. A discussion of the possible role of anatomical units in these retinal processes in presented, where a general interpretation for visual processing in cat's retina evolves from.  相似文献   

5.
Visual processing in avian retina is interpreted by means of a layered model in which: a) outer layers provide with spatio temporal fast and retarded versions of the stimuli incident on the retina; a possibility is that horizontal cells are involved in isotropically generating the retarded version which is transversally translated; b) prominent specialization of ganglion cells is the result of local non-linear lateral interaction at the inner plexiform layer, mediated by amacrines which return, also isotropically, the translated retarded signals. Small though systematic deviations in the sites of the lateral interaction result in anisotropic but uniform receptive fields for some ganglion cells. A simple though general expressin for the model is derived which includes the various types of recorded avian ganglion retinal cells responses, which also permits a unified interpretation of visual processing in avian and cat's retinae.  相似文献   

6.
In this paper a mathematical model of the retina was proposed to clarify the spatio-temporal information processing mechanism in the retina of vertebrates. In order to explain spatio-temporal characteristics of an on-center receptive field of a ganglion cell, excitatory and inhibitory cell layers were introduced of which time lags increased with the lateral distance from a point of stimulation. The characteristics of this model were found to agree well with the physiological data: e.g., this model shows on-response to the input stimulus given on the center, off-response to the input on the surround, and on-off response to the input on the border between on- and off-response regions of the on-center field.  相似文献   

7.
A model is proposed for the mechanisms of sensitivity control at the outer and inner plexiform layers in the submammalian vertebrate retina on the basis of Werblin's results and other physiological results. The model is especially based on the following suggestions: The signal that acts to shift the bipolar curves is probably carried by horizontal cell processes extending from the surround to the center of the receptive field. Furthermore, amacrine cells carry a lateral antagonistic signal across the inner plexiform layer that affects the response properties of ganglion cells. The simulations of the model were made and the results of the ones considerably coincided with the experimental results of Werblin.  相似文献   

8.
Loss of fixation at the cement-bone interface can contribute to clinical loosening of cemented total hip replacements. In this study, the fatigue damage response was determined for cement-bone constructs subjected to shear fatigue loading. A typical three-phase fatigue response was observed with substantial early damage, followed by a long constant damage rate region and a final abrupt increase in damage to fracture. All of the damage resulted from creep (permanent) deformation during fatigue loading and there was no loss in cyclic stiffness. Using a Von Mises equivalent stress/strain concept, a general damage model was developed to describe the fatigue creep response of the cement-bone interface under either shear or tensile fatigue loading. Time to failure was highly correlated (r2=0.971) with equivalent creep strain rate and moderately related (r2=0.428) with equivalent initial strain for the two loading regimes. The equivalent creep strain at failure (0.052+/-0.018) was found to be independent of the applied equivalent stress. A combination of the creep damage model (to describe the damage process) with a constant final equivalent strain (as a failure criteria) could be used to assess the cement-bone failure response of cemented implant systems.  相似文献   

9.
PurposeThe accuracy of biomechanical models is predicated on the realism by which they represent their biomechanical tissues. Unfortunately, most models use phenomenological ligament models that neglect the behaviour in the failure region. Therefore, the purpose of this investigation was to test whether a mechanistic model of ligamentous tissue portrays behaviour representative of actual ligament failure tests.ModelThe model tracks the time-evolution of a population of collagen fibres in a theoretical ligament. Each collagen fibre is treated as an independent linear cables with constant stiffness. Model equations were derived by assuming these fibres act as a continuum and applying a conservation law akin to Huxley’s muscle model. A breaking function models the rate of collagen fibre breakage at a given displacement, and was chosen to be a linear function for this preliminary analysis.MethodsThe model was fitted to experimental average curves for the cervical anterior longitudinal ligament. In addition, the model was cyclically loaded to test whether the tissue model behaves similarly.ResultsThe model agreed very well with experiment with an RMS error of 14.23 N and an R2 of 0.995. Cyclic loading exhibited a reduction in force similar to experimental data.Discussion and conclusionThe proposed model showcases behaviour reminiscent of actual ligaments being strained to failure and undergoing cyclic load. Future work could incorporate viscous effects, or validate the model further by testing it in various loading conditions. Characterizing the breaking function more accurately would also lead to better results.  相似文献   

10.
Comment on: Alvarez-Fernández M, et al. EMBO Rep 2010; 11:452-8.  相似文献   

11.
12.
In the present study the thermal unfolding of amicyanin has been addressed using differential scanning calorimetry, fluorescence emission, optical density, circular dichroism and electron paramagnetic resonance. The combined use of these techniques has allowed us to assess, during unfolding of the protein, its global conformational changes in relationship to the local structural modifications occurring in the copper environment and close to the fluorescent chromophore Trp46 of the protein. The thermal transition from the native to the denatured state is on the whole irreversible and occurs in the temperature range between 65 and 72 degrees C, depending on the scan rate and technique used. Amicyanin as a whole shows a complex unfolding pathway, which has been described in terms of a three-step model: N <--> U --> F1 --> F2. According to this model, in the first step the native state of the protein (N) goes reversibly to the unfolded state (U), in the second one U goes irreversibly to F1 and, finally, the state F2 is irreversibly reached in the third step. Kinetic factors prevent the experimental separation of these steps. Nevertheless, the comparison of the data obtained with the different experimental techniques testifies the presence, within the unfolding pathway, of some intermediate states, although not sufficiently long-lived to allow a detailed characterization. A first intermediate transient state has been identified around 68 degrees C, whereas a second one can be related to conformational changes that involve the copper environment. Finally, an exothermal phenomenon, caused by irreversible rearrangements of the melted polypeptide chains, is evidenced. In addition, according to the EPR findings, the type 1 copper ion, which is four-fold coordinated by two N and two S atoms in a distorted tetrahedron in the native state of the protein, shows type 2 features after denaturation. A mathematical model simulating the unfolding Cp(exc) profile has been also developed.  相似文献   

13.
14.
A proximate model for thermal tolerance in ectotherms   总被引:1,自引:0,他引:1  
T. M. Van Der Have 《Oikos》2002,98(1):141-155
  相似文献   

15.
Summary The reliability of histochemical determinations of the enzyme activity after thermal damage has been studied with the aid of two model systems. Polyacrylamide films and erythrocyte ghosts containing either -glucuronidase or alkaline phosphatase, were submitted to heating and the activities retained were assessed both biochemically and histochemically. For the enzymes studied, the results show that tissue alterations induced by heat can influence histochemical reaction procedures, and that with these model systems, factors which are important for the histochemical quantitation of enzyme activities in thermally damaged tissues can be evaluated quantitatively. Potentialities of these model systems in the study of evaluating thermal damage through histochemical enzyme activity determinations, are discussed.To whom offprint requests should be sent  相似文献   

16.
17.
A new model for the continuum concept   总被引:10,自引:0,他引:10  
A reformulation of the continuum concept is presented after considering the implications of the community/continuum controversy and current niche theory. Community is a spatial concept dependent on landscape pattern while the continuum is an environmental concept referring to an abstract space. When applying niche theory to plants, the mechanisms of competition are ill-defined and the assumption of bell-shaped response curves for species unrealistic.Eight testable propositions on the pattern of response of vegetation to environmental gradients are presented 1. Environmental gradients are of two types. a) resource gradients or b) direct physiological gradients. 2. The fundamental niche response of species to resource gradients is a series of similar nested response curves. 3. The fundamental niche response of species to direct gradients is a series of separate, independent, overlapping response curves. 4. Species fundamental response curves are such that they have a relative performance advantage in some part of the environmental space. 5. The shape of the realized niche is variable even bimodal but predictable from the fundamental response given the other species present. Propositions 6–8 describe the response shapes of emergent community properties to environmental gradient; species richness is bimodal, dominance trimodal and standing crop unimodal. Detailed comparisons of these propositions are made with the alternative theories of Ellenberg, Gauch and Whittaker, Grime, and Tilman. These theories are incomplete lacking several generally accepted properties of plants and vegetation.  相似文献   

18.
Animal models of thermal trauma implicate oxygen radicals as causative agents in local wound response and distant organ injury following burn. This study was designed to determine the effect of melatonin treatment on levels of glutathione (GSH), malondialdehyde (MDA), protein oxidation (PO) and myeloperoxidase (MPO) activity in the kidney tissues of rats with thermal injury. Under ether anaesthesia, shaved dorsum of the rats was exposed to 90 degrees C bath for 10 s to induce burn injury. Rats were decapitated either 3 h or 24 h after burn injury. Melatonin was administered i.p. immediately after burn injury. In the 24-h burn group melatonin injections were repeated for two more occasions. In the sham group the same protocol was applied except that the dorsum was dipped in a 25 degrees C water bath for 10 s. Severe skin scald injury (30% of total body surface area) caused a significant decrease in GSH level, and significant increases in MDA and PO levels, and MPO activity at post-burn 3 and 24 hours. Treatment of rats with melatonin (10 mg/kg) significantly elevated the reduced GSH levels while it decreased MDA and PO levels as well as MPO activity.  相似文献   

19.
A model is proposed for the temporal characteristics of X-and Y-type responses of ganglion cells in the primate retina. The main suggestions of the model are: (I) The X-type temporal response is determined primarily by the delay between center and surround contributions. (II) The Y-type response is generated in the inner plexiform layer by a derivativelike operation on the bipolar cell's input, followed by a rectification in the convergence of these inputs onto the Y-ganglion-cell. (III) The derivative-like operation is obtained by recurrent inhibition in the dyad synaptic structure.The X-and Y-type responses predicted by the model, for a variety of stimuli, were examined and compared with available electrophysiological recordings. Finally, certain predictions derived from the model are discussed.  相似文献   

20.
Robotic surgery is an attractive, minimally invasive and high precision alternative to conventional surgical procedures. However, it lacks the natural touch and force feedback that allows the surgeon to control safe tissue manipulation. This is an important problem in standard surgical procedures such as clamping, which might induce severe tissue damage. In complex, heterogeneous, large deformation scenarios, the limits of the safe loading regime beyond which tissue damage occurs are unknown. Here, we show that a continuum damage model for arteries, implemented in a finite element setting, can help to predict arterial stiffness degradation and to identify critical loading regimes. The model consists of the main mechanical constituents of arterial tissue: extracellular matrix, collagen fibres and smooth muscle cells. All constituents are allowed to degrade independently in response to mechanical overload. To demonstrate the modularity and portability of the proposed model, we implement it in a commercial finite element programme, which allows to keep track of damage progression via internal variables. The loading history during arterial clamping is simulated through four successive steps, incorporating residual strains. The results of our first prototype simulation demonstrate significant regional variations in smooth muscle cell damage. In three additional steps, this damage is evaluated by simulating an isometric contraction experiment. The entire finite element simulation is finally compared with actual in vivo experiments. In the short term, our computational simulation tool can be useful to optimise surgical tools with the goal to minimise tissue damage. In the long term, it can potentially be used to inform computer-assisted surgery and identify safe loading regimes, in real time, to minimise tissue damage during robotic tissue manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号