首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The gene locus of Machado-Joseph disease (MJD) has recently been mapped within a 29-cM subregion of 14q chromosome. We did a linkage study of 24 multigenerational MJD Japanese pedigrees, in an attempt to narrow the candidate region of this gene. Pairwise and multipoint linkage analysis, together with haplotype segregation analysis, led to the conclusion that the MJD gene is located at the 6.8-cM interval between D14S256 and D14S81 (Zmax = 24.78, multipoint linkage analysis). D14S291 and D14S280, located at the center of this interval, showed no obligate recombination with the MJD gene (Zmax = 5.93 for D14S291 and 9.99 for D14S280). A weak, but significant, linkage disequilibrium of MJD gene was noted with D14S81 (P < .05) but not with D14S291 or D14S280. These results suggest that a 3.6-cM interval flanked by D14S291/D14S280 and D14S81 is the most likely location of the MJD gene and that it is closest to D14S81.  相似文献   

2.
Friedreich ataxia (FA) is an autosomal recessive degenerative disease of the nervous system of unknown biochemical cause. The FA gene has been shown to be in close linkage with the two chromosome 9 markers D9S5 and D9S15, and linkage disequilibrium between FA and D9S15 has been detected in French families by Hanauer et al. We used new highly informative markers at the above loci to analyze Italian FA families for linkage and linkage disequilibrium. The new markers were a three-allele BstXI RFLP at D9S5 (PIC = .55) and a six-allele microsatellite, typed by polymerase chain reaction, at D9S15 (PIC = .75). We obtained maximum lod scores of 8.25 between FA and D9S5, 10.55 between FA and D9S15, and 9.52 between D9S5 and D9S15, all at zero recombination. Our results, combined with those reported by other authors, reduce maxlod-1 (maximum lod score minus 1) confidence limits to less than 1.1 cM between FA and D9S5, 1.2 cM between FA and D9S15, and 1.4 cM between D9S5 and D9S15. Linkage disequilibrium with FA was found only for D9S15 when all families were evaluated but was also found for a D9S5/D9S15 haplotype in a subgroup of southern Italian families. We conclude that FA, D9S5, and D9S15 are tightly clustered and that studies of geographically restricted groups may reveal a limited number of mutations responsible for the disease in the Italian population. We present preliminary evidence from pulsed-field gel electrophoresis that D9S5 and D9S15 may be less than 450 kb apart. Linkage disequilibrium between FA and D9S15 suggests that the disease gene may be at an even shorter distance from this marker locus, which therefore represents a very good starting point for cloning attempts.  相似文献   

3.
The chromosome 19 apolipoprotein E/CI/CII gene cluster was examined for evidence of linkage to a familial Alzheimer disease (FAD) locus. The family groups studied were Volga German (VG), early-onset non-VG (ENVG; mean age at onset <60 years), and late-onset families. A genetic association was observed between apolipoprotein E (ApoE) allele ε4 and FAD in late-onset families; the ε4 allele frequency was .51 in affected subjects, .37 in at-risk subjects, .11 in spouses, and .19 in unrelated controls. The differences between the ε4 frequencies in affected subjects versus controls and in at-risk subjects versus controls were highly significant (standard normal deviate [ZSND]) = 7.37, P < 10−9; and ZSND = 4.07, P < .00005, respectively). No association between the ε4 allele and FAD was observed in the ENVG or VG groups. A statistically significant allelic association between ε4 and AD was also observed in a group of unrelated subjects; the ε4 frequency was .26 in affected subjects, versus .19 in controls (ZSND = 2.20, P < .03). Evidence of linkage of ApoE and ApoCII to FAD was examined by maximum-likelihood methods, using three models and assuming autosomal dominant inheritance: (1) age-dependent penetrance, (2) extremely low (1%) penetrance, and (3) age-dependent penetrance corrected for sporadic Alzheimer disease (AD). For ApoCII in late-onset families, results for close linkage were negative, and only small positive lod-score-statistic (Z) values were obtained (model 1, maximum Z [Zmax] = 0.61, recombination fraction [θ] = .30; model 2, Zmax = 0.47, θ = .20). For ApoE in late-onset kindreds, positive Z values were obtained when either allele frequencies from controls (model 1, Zmax = 2.02, θ = .15; model 2, Zmax = 3.42, θ = .05) or allele frequencies from the families (model 1, Zmax = 1.43, θ = .15; model 2, Zmax = 1.70, θ = .05) were used. When linkage disequilibrium was incorporated into the analysis, the Z values increased (model 1, Zmax = 3.17, θ = .23; model 3, Zmax = 1.85, θ = .20). For the ENVG group, results for ApoE and ApoCII were uniformly negative. Affected-pedigree-member analysis gave significant results for the late-onset kindreds, for ApoE (ZSND = 3.003, P = .003) and ApoCII (ZSND = 2.319, P = .016), when control allele frequencies were used but not when allele frequencies were derived from the families.  相似文献   

4.
Friedreich ataxia is a neurodegenerative disorder with autosomal recessive inheritance. Precise linkage mapping of the Friedreich ataxia locus (FRDA) in 9q13-q21 should lead to the isolation of the defective gene by positional cloning. The two closest DNA markers, D9S5 and D9S15, show very tight linkage to FRDA, making difficult the ordering of the three loci. We present a linkage study of three large Friedreich ataxia families of Tunisian origin, with several multiallelic markers around D9S5 and D9S15. Haplotype data were used to investigate genetic homogeneity of the disease in these geographically related families. A meiotic recombination was found in a nonaffected individual, which excludes a 150-kb segment, including D9S15, as a possible location for the Friedreich ataxia gene and which should orient the search in the D9S5 region.  相似文献   

5.
Refined genetic localization for central core disease   总被引:4,自引:3,他引:1  
Central core disease (CCO) is an autosomal dominant myopathy clinically distinct from malignant hyperthermia (MHS). In a large kindred in which the gene for CCO is segregating, two-point linkage analysis gave a maximum lod score, between the central core disease locus (CCO) and the ryanodine receptor locus (RYR1), of 11.8, with no recombination. Mutation within RYR1 is responsible for MHS, and RYR1 is also a candidate locus for CCO. A combination of physical mapping using a radiation-induced human-hamster hybrid panel and of multipoint linkage analysis using the Centre d'Etude du Polymorphisme Humain families established the marker order and sex-average map distances (in centimorgans) on the background map as D19S75–(5.2)–D19S9–(3.4)–D19S191–(2.2)–RYR1–(1.7)–D19S190–(1.6)-D19S47–(2.0)–CYP2B. Recombination was observed between CCO and the markers flanking RYR1. These linkage data are consistent with the hypothesis that CCO and RYR1 are allelic. The most likely position for CCO is near RYR1, with a multipoint lod score of 11.4, in 19q13.1 between D19S191 and D19S190, within the same interval as MHS (RYR1).  相似文献   

6.
The locus for Friedreich ataxia (FRDA), a severe neurodegenerative disease, is tightly linked to markers D9S5 and D9S15, and analysis of rare recombination events has suggested the order cen–FRDA–D9S5–D9S15–qter. We report here the construction of a YAC contig extending 800 kb centromeric to D9S5 and the isolation of five new microsatellite markers from this region. In order to map these markers with respect to the FRDA locus, all within a 1-cM confidence interval, we sought to increase the genetic information of available FRDA families by considering homozygosity by descent and association with founder haplotypes in isolated populations. This approach allowed us to identify one phase-known recombination and one probable historic recombination on haplotypes from Réunion Island patients, both of which place three of the five markers proximal to FRDA. This represents the first identification of close FRDA flanking markers on the centromeric side. The two other markers allowed us to narrow the breakpoint of a previously identified distal recombination that is >180 kb from D9S5 (26P). Taken together, the results place the FRDA locus in a 450-kb interval, which is small enough for direct search of candidate genes. A detailed rare cutter restriction map and a cosmid contig covering this interval were constructed and should facilitate the search of genes in this region.  相似文献   

7.
Primary microcephaly (MCPH) is an autosomal-recessive congenital disorder characterized by smaller-than-normal brain size and mental retardation. MCPH is genetically heterogeneous with six known loci: MCPH1–MCPH6. We report mapping of a novel locus, MCPH7, to chromosome 1p32.3–p33 between markers D1S2797 and D1S417, corresponding to a physical distance of 8.39 Mb. Heterogeneity analysis of 24 families previously excluded from linkage to the six known MCPH loci suggested linkage of five families (20.83%) to the MCPH7 locus. In addition, four families were excluded from linkage to the MCPH7 locus as well as all of the six previously known loci, whereas the remaining 15 families could not be conclusively excluded or included. The combined maximum two-point LOD score for the linked families was 5.96 at marker D1S386 at θ = 0.0. The combined multipoint LOD score was 6.97 between markers D1S2797 and D1S417. Previously, mutations in four genes, MCPH1, CDK5RAP2, ASPM, and CENPJ, that code for centrosomal proteins have been shown to cause this disorder. Three different homozygous mutations in STIL, which codes for a pericentriolar and centrosomal protein, were identified in patients from three of the five families linked to the MCPH7 locus; all are predicted to truncate the STIL protein. Further, another recently ascertained family was homozygous for the same mutation as one of the original families. There was no evidence for a common haplotype. These results suggest that the centrosome and its associated structures are important in the control of neurogenesis in the developing human brain.  相似文献   

8.
Familial juvenile nephronophthisis (NPH) is an autosomal recessive kidney disease that leads to end-stage renal failure in adolescence and is associated with the formation of cysts at the cortico-medullary junction of the kidneys. NPH is responsible for about 15% of end-stage renal disease in children, as shown by Kleinknecht and Habib. NPH in combination with autosomal recessive retinitis pigmentosa is known as the Senior-Løken syndrome (SLS) and exhibits renal pathology that is identical to NPH. We had excluded 40% of the human genome from linkage with a disease locus for NPH or SLS when antignac et al. first demonstrated linkage for an NPH locus on chromosome 2. We present confirmation of linkage of an NPH locus to microsatellite markers on chromosome 2 in nine families with NPH. By linkage analysis with marker AFM262xb5 at locus D2S176, a maximum lod score of 5.05 at a θmax = .03 was obtained. In a large NPH family that yielded at D2S176 a maximum lod score of 2.66 at θmax = .0, markers AFM172xc3 and AFM016yc5, representing loci D2S135 and D2S110, respectively, were identified as flanking markers, thereby defining the interval for an NPH locus to a region of approximately 15 cM. Furthermore, the cytogenetic assignment of the NPH region was specified to 2p12-(2q13 or adjacent bands) by calculation of linkage between these flanking markers and markers with known unique cytogenetic assignment. The refined map may serve as a genetic framework for additional genetic and physical mapping of the region.  相似文献   

9.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

10.
The enzymes of the 17β-hydroxysteroid dehydrogenase (17β-HSD) gene family are responsible for a key step in the formation and degradation of androgens and estrogens: catalyzing the interconversion of 17-ketosteroids and their active 17β-hydroxysteroid counterparts. The structure of human type II 17β-HSD cDNA was recently reported. This enzyme catalyzes the interconversion of Δ4-androstenedione and testosterone, androstanedione and dihydrotestosterone, and estrone and 17β-estradiol, whereas type I 17β-HSD catalyzes exclusively the interconversion of estrogens. To locate the HSD17B2 gene, the novel dinucleotide CA repeat sequence found 571 bp downstream from the end of exon 1 was genotyped into eight CEPH reference families by PCR. Two-point linkage analysis was performed between the latter polymorphism and the 2066 microsatellite markers of Généthon. The maximal pairwise lod score (Zmax = 33.3) with a maximal recombination fraction (θmax) of 0.008 was obtained with the marker D16S422 located on 16q24.1–q24.2. To define further the localization of the HSD17B2 gene, we constructed a high-resolution genetic map of the region flanking the polymorphic HSD17B2 gene including eight Généthon markers. The order of the HSD17B2 gene and markers is qter-D16S516 — D16S504 — D16S507 — D16S505 — D16S511 — [HSD17B2—D16S422]—D16S520—D16S413—tel.  相似文献   

11.
To achieve a better understanding of Holocene climate change in the monsoon regions of China, we investigated the molecular distributions and carbon and hydrogen isotope compositions (δ13C and δD values) of long-chain n-alkanes in a peat core from the Shiwangutian (SWGT) peatland, south China over the last 9 ka. By comparisons with other climate records, we found that the δ13C values of the long-chain n-alkanes can be a proxy for humidity, while the δD values of the long-chain n-alkanes primarily recorded the moisture source δD signal during 9–1.8 ka BP and responded to the dry climate during 1.8–0.3 ka BP. Together with the average chain length (ACL) and the carbon preference index (CPI) data, the climate evolution over last 9 ka in the SWGT peatland can be divided into three stages. During the first stage (9–5 ka BP), the δ13C values were depleted and CPI and Paq values were low, while ACL values were high. They reveal a period of warm and wet climate, which is regarded as the Holocene optimum. The second stage (5–1.8 ka BP) witnessed a shift to relatively cool and dry climate, as indicated by the more positive δ13C values and lower ACL values. During the third stage (1.8–0.3 ka BP), the δ13C, δD, CPI and Paq values showed marked increase and ACL values varied greatly, implying an abrupt change to cold and dry conditions. This climate pattern corresponds to the broad decline in Asian monsoon intensity through the latter part of the Holocene. Our results do not support a later Holocene optimum in south China as suggested by previous studies.  相似文献   

12.
The locus for Saethre-Chotzen syndrome, a common autosomal dominant disorder of craniosynostosis and digital anomalies, was previously mapped to chromosome 7p between D7S513 and D7S516. We used linkage and haplotype analyses to narrow the disease locus to an 8-cM region between D7S664 and D7S507. The tightest linkage was to locus D7S664 ( = 7.16, θ = .00). Chromosomes from a Saethre-Chotzen syndrome patient with t(2;7) (p23;p22) were used for in situ hybridization with YAC clones containing D7S664 and D7S507. The D7S664 locus was found to lie distal to the 7p22 breakpoint, and the D7S507 locus was deleted from the translocation chromosomes. These genetic and physical mapping data independently show that the disease locus resides in this interval.  相似文献   

13.
Confirmation of chromosome 9p linkage in familial melanoma   总被引:11,自引:3,他引:8       下载免费PDF全文
Malignant melanoma occurs as a familial cancer in 5%–10% of cases where it segregates in a manner consistent with autosomal dominant inheritance. Evidence from cytogenetics, fine-mapping studies of deletions in melanomas, and recent linkage studies supports the location of a human melanoma predisposition gene on the short arm of chromosome 9. We have carried out linkage analysis using the 9p markers IFNA and D9S126 in 26 Australian melanoma kindreds. Multipoint analysis gave a peak lod score of 4.43, 15 cM centromeric to D9S126, although a lod score of 4.13 was also found 15 cM telomeric of IFNA. These data confirm the existence of a melanoma susceptibility gene on 9p and indicate that this locus most probably lies outside of the IFNA–D9S126 interval. No significant heterogeneity was found between families, when either pairwise or multipoint data were analyzed using HOMOG.  相似文献   

14.
We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear ε-oligo(l-lysines), (denoted εKn, n = 3–10, 31; n is the number of lysines equal to the ligand charge) and branched α-substituted homologues of εK10: εYK10, εLK10 (Z = +10); εRK10, εYRK10 and εLYRK10 (Z = +20). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, CKCl). The dependence of EC50 (ligand concentration at the midpoint of DNA condensation) on CKCl shows the existence of a salt-independent regime at low CKCl and a salt-dependent regime with a steep rise of EC50 with increase of CKCl. Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher CKCl. A novel and simple relationship describing the EC50 dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand–DNA complex is derived. For the ε-oligolysines εK3–εK10, the experimental dependencies of EC50 on CKCl and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.  相似文献   

15.
Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-β-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC–tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.  相似文献   

16.

Objective

End-stage renal disease (ESRD) is a severe health concern over the world. Associations between apolipoprotein E (apoE) gene polymorphisms and the risk of ESRD remained inconclusive. This study aimed to investigate the association between apoE gene polymorphisms and ESRD susceptibility.

Methods

Databases including PubMed, Embase, Web of Science and the Cochrane Library were searched to find relevant studies. Meta-analysis method was used synthesize the eligible studies.

Results

Sixteen pertinent case-control studies which included 3510 cases and 13924 controls were analyzed. A significant association was found between ε2 allele and the ESRD risk (odds ratio (OR) = 1.30, 95% confidence interval (CI) 1.15–1.46, P < 0.0001; I 2 = 18%, P for heterogeneity = 0.24). The ε2ε3, ε2ε4, ε3ε3, ε3ε4, ε4ε4, ε3 and ε4 were not associated with the susceptibility of ESRD. In the subgroup analysis by ethnicity, there was a statistically significant association between ε2ε3 or ε2 allele and ESRD risk in East Asians (OR = 1.66, 95% CI 1.31–2.10, P < 0.0001; OR = 1.62, 95% CI 1.31–2.01, P < 0.0001, respectively), but not in Caucasians. E2 carriers had higher plasma apoE (mean difference = 16.24 mg/L, 95% CI 7.76-24.73, P = 0.0002) than the (ε3 + ε4) carriers in patients with ESRD. The publication bias was not significant.

Conclusion

The ε2 allele of apoE gene might increase the risk of ESRD. E2 carriers expressed higher level of plasma apoE in patients with ESRD. More well-designed studies are needed to confirm these associations in the future.  相似文献   

17.
Effects of the RAD52 Gene on Recombination in SACCHAROMYCES CEREVISIAE   总被引:43,自引:16,他引:43       下载免费PDF全文
Effects of the rad52 mutation in Saccharomyces cerevisiae on meiotic, γ-ray-induced, UV-induced and spontaneous mitotic recombination were studied. The rad52/rad52 diploids undergo premeiotic DNA synthesis; sporulation occurs but inviable spores are produced. Both intra and intergenic recombination during meiosis were examined in cells transferred from sporulation medium to vegetative medium at different time intervals. No intragenic recombination was observed at the his1–1/his1–315 and trp5–2/trp5–48 heteroalleles. Gene-centromere recombination also was not observed in rad52/rad52 diploids. No γ-ray- or UV-induced intragenic mitotic recombination is seen in rad52/rad52 diploids. The rate of spontaneous mitotic recombination is lowered five-fold at the his1–1/his1–315 and leu1–c/leu1–12 heteroalleles. Spontaneous reversion rates of both his1–1 and his1–315 were elevated 10 to 20 fold in rad52/rad52 diploids.—The RAD52 gene function is required for spontaneous mitotic recombination, UV- and γ-ray-induced mitotic recombination and meiotic recombination.  相似文献   

18.
The locus (RP1) for one form of autosomal dominant retinitis pigmentosa (adRP) was mapped on chromosome 8q11-q22 between D8S589 and D8S285, which are about 8 cM apart, by linkage analysis in an extended family ascertained in the USA. We have studied a multigeneration Australian family with adRP and found close linkage without recombination between the disease locus and D8S591, D8S566, and D8S166 (Zmax = 1.137– 4.650 at θ = 0.00), all mapped in the region known to harbor RP1. Assuming that the mutation of the same gene is responsible for the disease in both families, the analysis of multiply informative meioses in the American and Australian families places the adRP locus between D8S601 and D8S285, which reduces the critical region to about 4 cM, corresponding to approximately 4 Mb, which is completely covered by a yeast artificial chromosome contig assembled recently. Received: 23 April 1996 / Accepted: 3 July 1996  相似文献   

19.
Fukuyama-type congenital muscular dystrophy (FCMD), the second most common form of childhood muscular dystrophy in Japan, is an autosomal recessive severe muscular dystrophy associated with an anomaly of the brain. After our initial mapping of the FCMD locus to chromosome 9q31-33, we further defined the locus within a region of ~5 cM between loci D9S127 and CA246, by homozygosity mapping in patients born to consanguineous marriages and by recombination analyses in other families. We also found evidence for strong linkage disequilibrium between FCMD and a polymorphic microsatellite marker, mfd220, which showed no recombination and a lod score of (Z) 17.49. A “111-bp” allele for the mfd220 locus was observed in 22 (34%) of 64 FCMD chromosomes, but it was present in only 1 of 120 normal chromosomes. This allelic association with FCMD was highly significant (χ2 =50.7; P<.0001). Hence, we suspect that the FCMD gene could lie within a few hundred kilobases of the mfd220 locus.  相似文献   

20.
Spondyloarthritis (SpA) is a chronic inflammatory disorder with a strong genetic predisposition dominated by the role of HLA-B27. However, the contribution of other genes to the disease susceptibility has been clearly demonstrated. We previously reported significant evidence of linkage of SpA to chromosome 9q31–34. The current study aimed to characterize this locus, named SPA2. First, we performed a fine linkage mapping of SPA2 (24 cM) with 28 microsatellite markers in 149 multiplex families, which allowed us to reduce the area of investigation to an 18 cM (13 Mb) locus delimited by the markers D9S279 and D9S112. Second, we constructed a linkage disequilibrium (LD) map of this region with 1,536 tag single-nucleotide polymorphisms (SNPs) in 136 families (263 patients). The association was assessed using a transmission disequilibrium test. One tag SNP, rs4979459, yielded a significant P-value (4.9×10−5). Third, we performed an extension association study with rs4979459 and 30 surrounding SNPs in LD with it, in 287 families (668 patients), and in a sample of 139 cases and 163 controls. Strong association was observed in both familial and case/control datasets for several SNPs. In the replication study, carried with 8 SNPs in an independent sample of 232 cases and 149 controls, one SNP, rs6478105, yielded a nominal P-value<3×10−2. Pooled case/control study (371 cases and 312 controls) as well as combined analysis of extension and replication data showed very significant association (P<5×10−4) for 6 of the 8 latter markers (rs7849556, rs10817669, rs10759734, rs6478105, rs10982396, and rs10733612). Finally, haplotype association investigations identified a strongly associated haplotype (P<8.8×10−5) consisting of these 6 SNPs and located in the direct vicinity of the TNFSF15 gene. In conclusion, we have identified within the SPA2 locus a haplotype strongly associated with predisposition to SpA which is located near to TNFSF15, one of the major candidate genes in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号