首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Friedreich ataxia (FA) is an autosomal recessive degenerative disease of the nervous system of unknown biochemical cause. The FA gene has been shown to be in close linkage with the two chromosome 9 markers D9S5 and D9S15, and linkage disequilibrium between FA and D9S15 has been detected in French families by Hanauer et al. We used new highly informative markers at the above loci to analyze Italian FA families for linkage and linkage disequilibrium. The new markers were a three-allele BstXI RFLP at D9S5 (PIC = .55) and a six-allele microsatellite, typed by polymerase chain reaction, at D9S15 (PIC = .75). We obtained maximum lod scores of 8.25 between FA and D9S5, 10.55 between FA and D9S15, and 9.52 between D9S5 and D9S15, all at zero recombination. Our results, combined with those reported by other authors, reduce maxlod-1 (maximum lod score minus 1) confidence limits to less than 1.1 cM between FA and D9S5, 1.2 cM between FA and D9S15, and 1.4 cM between D9S5 and D9S15. Linkage disequilibrium with FA was found only for D9S15 when all families were evaluated but was also found for a D9S5/D9S15 haplotype in a subgroup of southern Italian families. We conclude that FA, D9S5, and D9S15 are tightly clustered and that studies of geographically restricted groups may reveal a limited number of mutations responsible for the disease in the Italian population. We present preliminary evidence from pulsed-field gel electrophoresis that D9S5 and D9S15 may be less than 450 kb apart. Linkage disequilibrium between FA and D9S15 suggests that the disease gene may be at an even shorter distance from this marker locus, which therefore represents a very good starting point for cloning attempts.  相似文献   

2.
Genetic homogeneity at the Friedreich ataxia locus on chromosome 9   总被引:3,自引:10,他引:3       下载免费PDF全文
Classical Friedreich ataxia, a progressive, neurodegenerative disorder involving both the central and peripheral nervous systems, has been subclassified according to the observed clinical heterogeneity. The variations in the age at onset and in the spectrum and severity of symptoms have previously been interpreted as evidence of genetic heterogeneity. We have studied the linkage between the disorder and closely linked DNA markers in families of distinct ethnic origins, including the "typical" French-Canadians and the Acadian population of Louisiana. The disease in these two populations, both of continental French origin, has a very similar initial clinical picture. However, a marked difference in the rate of progression of the obligatory symptoms after 10 years of apparent disease is observed. A total of 553 individuals from 80 families with 202 affected members have been typed with the chromosome 9 marker MCT112, which we have previously shown to be closely linked to the disease locus. Evidence for linkage was observed in all families with the generation of a combined total lod score of 25.09 at a recombination fraction of theta = .00, providing strong evidence for genetic homogeneity at this locus for the classical form of this disease.  相似文献   

3.
4.
Friedreich ataxia is a neurodegenerative disorder with autosomal recessive inheritance. Precise linkage mapping of the Friedreich ataxia locus (FRDA) in 9q13-q21 should lead to the isolation of the defective gene by positional cloning. The two closest DNA markers, D9S5 and D9S15, show very tight linkage to FRDA, making difficult the ordering of the three loci. We present a linkage study of three large Friedreich ataxia families of Tunisian origin, with several multiallelic markers around D9S5 and D9S15. Haplotype data were used to investigate genetic homogeneity of the disease in these geographically related families. A meiotic recombination was found in a nonaffected individual, which excludes a 150-kb segment, including D9S15, as a possible location for the Friedreich ataxia gene and which should orient the search in the D9S5 region.  相似文献   

5.
Chamberlain et al. have assigned the gene for Friedreich ataxia (FA), a recessive neurodegenerative disorder, to chromosome 9, and have proposed a regional localization in the proximal short arm (9p22-cen), on the basis of linkage to D9S15 and to interferon-beta (IFNB), the latter being localized in 9p22. We confirmed more recently the close linkage to D9S15 in another set of families but found much looser linkage to IFNB. We also reported another closely linked marker, D9S5. Additional families have now been studied, and our updated lod scores are z = 14.30 at theta = .00 for D9S15-FA linkage and z = 6.30 at theta = .00 for D9S5-FA linkage. Together with the recent data of Chamberlain et al., this shows that D9S15 is very likely within 1 cM of the FA locus. We have found very significant linkage disequilibrium (delta Std = .28, chi 2 = 9.71, P less than .01) between FA and the D9S15 MspI RFLP in French families, which further supports the very close proximity of these two loci. No recombination between D9S5 and D9S15 was found in the FA families or Centre d'Etude du Polymorphisme Humain families (z = 9.30 at theta = .00). Thus D9S5, D9S15, and FA define a cluster of tightly linked loci. We have mapped D9S5 by in situ hybridization to 9q13-q21, and, accordingly, we assign the D9S5, D9S15, and FA cluster to the proximal part of chromosome 9 long arm, close to the heterochromatic region.  相似文献   

6.
We have previously assigned the Friedreich ataxia locus (FRDA) to chromosome 9; the current maximal lod score between FRDA and MCT112 (D9S15) is greater than 50 at a recombination fraction of theta = 0. The physical assignment of the locus defined by MCT112, and hence FRDA, has not been determined, although linkage analysis of MCT112 with other chromosome 9 markers inferred a location close to the centromere. We have used in situ hybridisation with MCT112, a corresponding cosmid MJ1, and DR47 (D9S5), coupled with mapping studies on hybrid cell panels, to define more precisely the location of the disease locus. The in situ location of all three probes is 9q13----q21.1, distal to the variable heterochromatin region. Physical assignment of FRDA will allow us to identify hybrid cell lines containing the mutated gene.  相似文献   

7.
We report a highly polymorphic, sequence-tagged microsatellite site (STMS) at the D5S99 locus that was previously identified by a less informative restriction fragment length polymorphism (RFLP). This marker, which was also localized to the physical map of chromosome 5q by fluorescent in situ hybridization (FISH), should assist in the precision mapping of genes in the area 5q33–34.  相似文献   

8.
9.
Primary systemic carnitine deficiency (SCD) is a rare hereditary disorder transmitted by an autosomal recessive mode of inheritance. The disorder includes cardiomyopathy, muscle weakness, hypoketotic coma with hypoglycemia, and hyperammonemia. In this study, we conducted a linkage analysis of a Japanese SCD family with a proband-a 9-year-old girl-and 26 members. The serum and urinary carnitine levels were determined for all members. The entire genome was searched for linkage to the gene locus for SCD, by use of a total of approximately 300 polymorphic markers located approximately 15-20 cM apart. In the family, there were two significantly different phenotypes, in terms of serum free-carnitine levels: low serum free-carnitine level (29.5+/-5.0 microM; n=14) and normal serum free-carnitine level (46.8+/-6.2 microM; n=12). There was no correlation of urinary free-carnitine levels with the low serum-level phenotype (putative heterozygote), but in normal phenotypes (wild type) urinary levels decreased as the serum levels decreased; renal resorption of free carnitine appeared to be complete in wild-type individuals, when the serum free-carnitine level was <36 microM. Linkage analysis using an autosomal dominant mode of inheritance of heterozygosity revealed a tight linkage between the disease allele and D5S436 on chromosome 5q, with a two-point LOD score of 4.98 and a multipoint LOD score of 5.52. The haplotype analysis revealed that the responsible genetic locus lies between D5S658 and D5S434, which we named the "SCD" locus. This region was syntenic with the jvs locus, which is responsible for murine SCD. Phylogenic conversion of the SCD locus strongly suggests involvement of a single gene, in human SCD.  相似文献   

10.
11.
The linkage of the Phi, Pgd, Po2, S, H and halothane sensitivity loci was followed in a Belgian Landrace family, heterozygous for these systems over 6 generations. Recombination next to the S locus occurred mainly in pigs belonging to this particular family. From this investigation the position of the S locus is proved to be outwith the Phi-Pgd region, next to Phi . Therefore the gene sequence S - Phi - Hal -H- Po2 -Pgd is proposed. Higher recombination rates were observed in the female parental line of the multiheterozygous family when compared to the male parental line. Additional data from animals, unrelated to this strain, confirm the evidence of close linkage of the S system to the nearest marker loci.  相似文献   

12.
The linkage of the Phi, Pgd, Po2, S, H and halothane sensitivity loci was followed in a Belgian Landrace family, heterozygous for these systems over 6 generations. Recombination next to the S locus occurred mainly in pigs belonging to this particular family. From this investigation the position of the S locus is proved to be outwith the Phi-Pgd region, next to Phi. Therefore the gene sequence S - Phi - Hal - H - Po2 - Pgd is proposed. Higher recombination rates were observed in the female parental line of the multiheterozygous family when compared to the male parental line. Additional data from animals, unrelated to this strain, confirm the evidence of close linkage of the S system to the nearest marker loci.  相似文献   

13.
Summary Two recent articles have reported the linkage of a gene for recessive spinal muscular atrophy (SMA) on the chromosome region 5q11.2–13.3. Our data show no linkage of the dominantly inherited forms of SMA to this chromosome region.  相似文献   

14.
15.
16.
17.
Familial typical migraine is a common, complex disorder that shows strong familial aggregation. Using latent-class analysis (LCA), we identified subgroups of people with migraine/severe headache in a community sample of 12,245 Australian twins (60% female), drawn from two cohorts of individuals aged 23-90 years who completed an interview based on International Headache Society criteria. We report results from genomewide linkage analyses involving 756 twin families containing a total of 790 independent sib pairs (130 affected concordant, 324 discordant, and 336 unaffected concordant for LCA-derived migraine). Quantitative-trait linkage analysis produced evidence of significant linkage on chromosome 5q21 and suggestive linkage on chromosomes 8, 10, and 13. In addition, we replicated previously reported typical-migraine susceptibility loci on chromosomes 6p12.2-p21.1 and 1q21-q23, the latter being within 3 cM of the rare autosomal dominant familial hemiplegic migraine gene (ATP1A2), a finding which potentially implicates ATP1A2 in familial typical migraine for the first time. Linkage analyses of individual migraine symptoms for our six most interesting chromosomes provide tantalizing hints of the phenotypic and genetic complexity of migraine. Specifically, the chromosome 1 locus is most associated with phonophobia; the chromosome 5 peak is predominantly associated with pulsating headache; the chromosome 6 locus is associated with activity-prohibiting headache and photophobia; the chromosome 8 locus is associated with nausea/vomiting and moderate/severe headache; the chromosome 10 peak is most associated with phonophobia and photophobia; and the chromosome 13 peak is completely due to association with photophobia. These results will prove to be invaluable in the design and analysis of future linkage and linkage disequilibrium studies of migraine.  相似文献   

18.
A new polymorphic CA repeat sequence was identified within the candidate region fot the autosomal dominant polycystic kidney disease type 2 (PKD2) locus. It should be a useful marker in the localization of this gene.  相似文献   

19.
Assignment of the YT blood group locus to chromosome 7q.   总被引:2,自引:0,他引:2  
The antithetical antigens YT1 and YT2 constitute the YT blood group system (International Society of Blood Transfusion system number 11). Despite being serologically well defined, the YT blood group locus (YT) has not secured a chromosomal location. In our report, peak lods of 3.61 at theta = 0.00 for YT:COL1A2 and of 3.31 at theta = 0.00 for YT:D7S13 allow us to assign YT to the long arm of chromosome 7.  相似文献   

20.
The Friedreich's ataxia locus (FRDA) has recently been mapped to 9q13-q21 by tight linkage to D9S15 and D9S5 loci. The present lack of recombination between these loci precludes further genetic mapping and suggests that the distances involved are in the megabase range. We have established a 1-Mb map around loci D9S15 (defined by probe MCT112) and D9S5 (defined by probe DR47) and found that they are at most 260 apart. Six rare cutting site clusters were found in a 450-kb segment containing both loci. Three clusters were completely unmethylated in two cell lines tested and might correspond to CpG islands flanking transcribed sequences. Cosmid mapping of a 52-kb region around D9S5 and pulse-field gel electrophoresis analysis showed the presence of three other CpG clusters that were partially or completely methylated. Two of them were present in the cosmid clones available and were associated with sequences conserved in other vertebrate species. The CpG islands and conserved sequences presented here can be used to search for genes defective in Friedreich's ataxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号