首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi W  Liu J  Huang Y  Qiao L 《Journal of virology》2001,75(21):10139-10148
Intestinal mucosa is a portal for many infectious pathogens. Systemic immunization, in general, does not induce a cytotoxic T-lymphocyte (CTL) response at the mucosal surface. Because papillomavirus (PV) naturally infects mucosa and skin, we determined whether PV pseudovirus, i.e., PV-like particles in which unrelated DNA plasmids are packaged, could generate specific mucosal immunity. We found that the pseudovirus that encoded the lymphocytic choriomeningitis virus gp33 epitope induced a stronger CTL response than a DNA vaccine (plasmid) encoding the same epitope given systemically. The virus-like particles that were used to make the pseudoviruses provided an adjuvant effect for induction of CTLs by the DNA vaccine. The PV pseudovirus pseudoinfected mucosal and systemic lymphoid tissues when administered orally. Oral immunization with the pseudovirus encoding human PV type 16 mutant E7 induced mucosal and systemic CTL responses. In comparison, a DNA vaccine encoding E7, when given orally, did not induce a CTL response in intestinal mucosal lymphoid tissue. Further, oral immunization with the human PV pseudovirus encoding E7 protected mice against mucosal challenge with an E7-expressing bovine PV pseudovirus. Thus, PV pseudovirus can be used as a novel vaccine to induce mucosal and systemic CTL responses.  相似文献   

2.
A murine model immunized by systemic and mucosal delivery of plasmid DNA vaccine expressing glycoprotein B (pCIgB) of pseudorabies virus (PrV) was used to evaluate both the nature of the induced immunity and protection against a virulent virus. With regard to systemic delivery, the intramuscular (i.m.) immunization with pCIgB induced strong PrV-specific IgG responses in serum but was inefficient in generating a mucosal IgA response. Mucosal delivery through intranasal (i.n.) immunization of pCIgB induced both systemic and mucosal immunity at the distal mucosal site. However, the levels of systemic immunity induced by i.n. immunization were less than those induced by i.m. immunization. Moreover, i.n. genetic transfer of pCIgB appeared to induce Th2-biased immunity compared with systemic delivery, as judged by the ratio of PrV-specific IgG isotypes and Th1- and Th2-type cytokines produced by stimulated T cells. Moreover, the immunity induced by i.n. immunization did not provide effective protection against i.n. challenge of a virulent PrV strain, whereas i.m. immunization produced resistance to viral infection. Therefore, although i.n. immunization was a useful route for inducing mucosal immunity at the virus entry site, i.n. immunization did not provide effective protection against the lethal infection of PrV.  相似文献   

3.
Although mucosal CD8+ T-cell responses are important in combating mucosal infections, the generation of such immune responses by vaccination remains problematic. In the present study, we evaluated the ability of plasmid DNA to induce local and systemic antigen-specific CD8+ T-cell responses after pulmonary administration. We show that the pulmonary delivery of plasmid DNA formulated with polyethyleneimine (PEI-DNA) induced robust systemic CD8+ T-cell responses that were comparable in magnitude to those generated by intramuscular (i.m.) immunization. Most importantly, we observed that the pulmonary delivery of PEI-DNA elicited a 10-fold-greater antigen-specific CD8+ T-cell response in lungs and draining lymph nodes of mice than that of i.m. immunization. The functional evaluation of these pulmonary CD8+ T cells revealed that they produced type I cytokines, and pulmonary immunization with PEI-DNA induced lung-associated antigen-specific CD4+ T cells that produced higher levels of interleukin-2 than those induced by i.m. immunization. Pulmonary PEI-DNA immunization also induced CD8+ T-cell responses in the gut and vaginal mucosa. Finally, pulmonary, but not i.m., plasmid DNA vaccination protected mice from a lethal recombinant vaccinia virus challenge. These findings suggest that pulmonary PEI-DNA immunization might be a useful approach for immunizing against pulmonary pathogens and might also protect against infections initiated at other mucosal sites.Since establishing that antigen-specific CD8+ T-cell populations in mucosal sites may confer protection against intracellular pathogens that initiate infections at mucosal surfaces, vaccine strategies have been explored for eliciting cellular immune responses in mucosal tissues (40). Studies have been done to evaluate the immunogenicity of vaccines delivered to a variety of mucosal surfaces, including those of the nose, intestine, rectum, and vagina. These studies have shown that immunization at mucosal sites can induce larger numbers of antigen-specific CD8+ T cells in mucosal tissues than parenteral immunization (3).Particular attention has focused on the lungs as a target for mucosal immunization. The lungs are an important mucosal portal of entry for pathogens. They are also a readily accessed mucosal site for the delivery of immunogens that might induce diverse mucosal immune responses. Pulmonary immunization strategies have been shown to generate potent Th1 responses and protective immunity against respiratory challenge with pathogens in several animal models (4, 29, 32, 37, 38).Because of the ease of generating vaccine constructs and the ability to administer repeated inoculations of the same vector, DNA immunization remains a promising vaccination strategy for eliciting cellular immune responses. Only a limited number of studies have been done to evaluate the immunogenicity of DNA vaccines following pulmonary delivery (4, 32). Although the importance of CD8+ T lymphocytes in eradicating mucosal infections has been well established, it has not been determined whether pulmonary DNA immunization can induce robust functional CD8+ T-cell responses.In the present study, we characterized antigen-specific CD8+ T lymphocytes in mice induced by the noninvasive pulmonary administration of plasmid DNA complexed to the cationic polymer polyethyleneimine (PEI). We demonstrate that the delivery of a DNA vaccine to the airways can induce a high frequency of functional antigen-specific CD8+ T cells in both systemic and mucosal sites.  相似文献   

4.
Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.  相似文献   

5.
DNA vaccines are usually given by intramuscular injection or by gene gun delivery of DNA-coated particles into the epidermis. Induction of mucosal immunity by targeting DNA vaccines to mucosal surfaces may offer advantages, and an oral vaccine could be effective for controlling infections of the gut mucosa. In a murine model, we obtained protective immune responses after oral immunization with a rotavirus VP6 DNA vaccine encapsulated in poly(lactide-coglycolide) (PLG) microparticles. One dose of vaccine given to BALB/c mice elicited both rotavirus-specific serum antibodies and intestinal immunoglobulin A (IgA). After challenge at 12 weeks postimmunization with homologous rotavirus, fecal rotavirus antigen was significantly reduced compared with controls. Earlier and higher fecal rotavirus-specific IgA responses were noted during the peak period of viral shedding, suggesting that protection was due to specific mucosal immune responses. The results that we obtained with PLG-encapsulated rotavirus VP6 DNA are the first to demonstrate protection against an infectious agent elicited after oral administration of a DNA vaccine.  相似文献   

6.
We previously demonstrated that chimeric porcine parvovirus-like particles (PPV:VLP) carrying heterologous epitopes, when injected intraperitoneally into mice without adjuvant, activate strong CD4(+) and CD8(+) T-cell responses specific for the foreign epitopes. In the present study, we investigated the immunogenicity of PPV:VLP carrying a CD8(+) T-cell epitope from the lymphocytic choriomeningitis virus (LCMV) administered by mucosal routes. Mice immunized intranasally with recombinant PPV:VLP, in the absence of adjuvant, developed high levels of PPV-specific immunoglobulin G (IgG) and/or IgA in their serum, as well as in mucosal sites such as the bronchoalveolar and intestinal fluids. Antibodies in sera from mice immunized parenterally or intranasally with PPV:VLP were strongly neutralizing in vitro. Intranasal immunization with PPV:VLP carrying the LCMV CD8(+) T-cell epitope also elicited a strong peptide-specific cytotoxic-T-cell (CTL) response. In contrast, mice orally immunized with recombinant PPV:VLP did not develop any antibody or CTL responses. We also showed that mice primed with PPV:VLP are still able to develop strong CTL responses after subsequent immunization with chimeric PPV:VLP carrying a foreign CD8(+) T-cell epitope. These results highlight the attractive potential of PPV:VLP as a safe, nonreplicating antigen carrier to stimulate systemic and mucosal immunity after nasal administration.  相似文献   

7.
Infectious diseases are responsible for a significant number of deaths during the first weeks of life. Some of the salient pathogens include HSV, HIV, hepatitis B virus, group B streptococcus, Haemophilus sp., and Chlamydia sp. The vertical transmission of many of these pathogens significantly increases the risk of neonatal infection. We recently reported that oral DNA immunization in utero induced high serum Ab titers and cell-mediated immunity in fetal lambs. In this study, we demonstrate immune memory and mucosal immunity in newborn lambs following oral DNA immunization of the fetus. A single oral exposure in utero to plasmid DNA encoding a truncated form of glycoprotein D of bovine herpesvirus-1 induced detectable immune responses in 80% (12 of 15) of newborn lambs. There was no evidence for the induction of immune tolerance in nonresponding lambs. Responding lambs displayed both systemic and mucosal immune responses and reduced virus shedding following intranasal challenge. Furthermore, strong anamnestic responses were evident for at least 3 mo after birth. The efficacy of in utero oral DNA immunization was further demonstrated with the hepatitis B surface Ag, and protective serum Ab titers occurred in 75% of immunized lambs. Thus, the present investigation confirms that oral DNA immunization in utero can induce both mucosal and systemic immune responses in the neonate and that this immunity has the potential to prevent vertical disease transmission.  相似文献   

8.
We have shown that sequential replicating adenovirus type 5 host range mutant human immunodeficiency virus/simian immunodeficiency virus (HIV/SIV) recombinant priming delivered first intranasally (i.n.) plus orally and then intratracheally (i.t.), followed by envelope protein boosting, elicits broad cellular immunity and functional, envelope-specific serum and mucosal antibodies that correlate with protection from high-dose SIV and simian/human immunodeficiency virus (SHIV) challenges in rhesus macaques. Here we extended these studies to compare the standard i.n./i.t. regimen with additional mucosal administration routes, including sublingual, rectal, and vaginal routes. Similar systemic cellular and humoral immunity was elicited by all immunization routes. Central and effector memory T cell responses were also elicited by the four immunization routes in bronchoalveolar lavage fluid and jejunal, rectal, and vaginal tissue samples. Cellular responses in vaginal tissue were more compartmentalized, being induced primarily by intravaginal administration. In contrast, all immunization routes elicited secretory IgA (sIgA) responses at multiple mucosal sites. Following a repeated low-dose intrarectal (i.r.) challenge with SIV(mac251) at a dose transmitting one or two variants, protection against acquisition was not achieved except in one macaque in the i.r. immunized group. All immunized macaques exhibited reduced peak viremia compared to that of controls, correlated inversely with prechallenge serum antienvelope avidity, antibody-dependent cellular cytotoxicity (ADCC) titers, and percent antibody-dependent cell-mediated viral inhibition. Both antibody avidity and ADCC titers were correlated with the number of exposures required for infection. Notably, we show for the first time a significant correlation of vaccine-induced sIgA titers in rectal secretions with delayed acquisition. Further investigation of the characteristics and properties of the sIgA should elucidate the mechanism leading to this protective effect.  相似文献   

9.
In this study we assessed prime-boost immunization strategies with a DNA vaccine (gB DNA) and attenuated recombinant vaccinia virus vector (rvacgB), both encoding the gB protein of HSV, for their effectiveness at inducing mucosal as well as systemic immunity to HSV. Confirming the reports of others, systemic priming with gB DNA and systemic boosting with rvacgB were the most effective means of inducing serum Ab and splenic T cell responses. Nevertheless, the systemic prime-boost approach failed to induce detectable humoral or T cell responses at mucosal sites. However, such responses, at both proximal and distal locations, were induced if immunizations, especially the priming dose, were administered mucosally. Curiously, whereas optimal immunity with systemic priming and boosting occurred when gB DNA was used to prime and rvacgB was used as a boost, mucosal responses were optimal when animals were mucosally primed with rvacgB and boosted with gB DNA given mucosally. Furthermore, notable mucosal responses also occurred in animals mucosally primed with rvacgB and subsequently boosted systemically with gB DNA. Because the mucosal prime-boost immunization protocol also induced excellent systemic immune responses, the approach should be useful to vaccinate against agents for which both mucosal and systemic immunity are important for protection.  相似文献   

10.
Vaccination by a mucosal route is an excellent approach to the control of mucosally acquired infections. Several reports on rodents suggest that DNA vaccines can be used to achieve mucosal immunity when applied to mucosal tissues. However, with the exception of one study with pigs and another with horses, there is no information on mucosal DNA immunization of the natural host. In this study, the potential of inducing mucosal immunity in cattle by immunization with a DNA vaccine was demonstrated. Cattle were immunized with a plasmid encoding bovine herpesvirus 1 (BHV-1) glycoprotein B, which was delivered with a gene gun either intradermally or intravulvomucosally. Intravulvomucosal DNA immunization induced strong cellular immune responses and primed humoral immune responses. This was evident after BHV-1 challenge when high levels of both immunoglobulin G (IgG) and IgA were detected. Intradermal delivery resulted in lower levels of immunity than mucosal immunization. To determine whether the differences between the immune responses induced by intravulvomucosal and intradermal immunizations might be due to the efficacy of antigen presentation, the distributions of antigen and Langerhans cells in the skin and mucosa were compared. After intravulvomucosal delivery, antigen was expressed early and throughout the mucosa, but after intradermal administration, antigen expression occurred later and superficially in the skin. Furthermore, Langerhans cells were widely distributed in the mucosal epithelium but found primarily in the basal layers of the epidermis of the skin. Collectively, these observations may account for the stronger immune response induced by mucosal administration.  相似文献   

11.
IL-12 plays a central role in both innate and acquired immunity and has been demonstrated to potentiate the protective immunity in several experimental vaccines. However, in this study, we show that IL-12 can be detrimental to the immune responses elicited by a plasmid DNA vaccine. Coadministration of the IL-12-expressing plasmid (pIL-12) significantly suppressed the protective immunity elicited by a plasmid DNA vaccine (pE) encoding the envelope protein of Japanese encephalitis virus. This suppressive effect was associated with marked reduction of specific T cell proliferation and Ab responses. A single dose of pIL-12 treatment with plasmid pE in initial priming resulted in significant immune suppression to subsequent pE booster immunization. The pIL-12-mediated immune suppression was dose dependent and evident only when the IL-12 gene was injected either before or coincident with the pE DNA vaccine. Finally, using IFN-gamma gene-disrupted mice, we showed that the suppressive activity of the IL-12 plasmid was dependent upon endogenous production of IFN-gamma. These results demonstrate that coexpression of the IL-12 gene can sometimes produce untoward effects to immune responses, and thus its application as a vaccine adjuvant should be carefully evaluated.  相似文献   

12.
Increasing evidence suggests that mucosally targeted vaccines will enhance local humoral and cellular responses whilst still eliciting systemic immunity. We therefore investigated the capacity of nasal, sublingual or vaginal delivery of DNA-PEI polyplexes to prime immune responses prior to mucosal protein boost vaccination. Using a plasmid expressing the model antigen HIV CN54gp140 we show that each of these mucosal surfaces were permissive for DNA priming and production of antigen-specific antibody responses. The elicitation of systemic immune responses using nasally delivered polyplexed DNA followed by recombinant protein boost vaccination was equivalent to a systemic prime-boost regimen, but the mucosally applied modality had the advantage in that significant levels of antigen-specific IgA were detected in vaginal mucosal secretions. Moreover, mucosal vaccination elicited both local and systemic antigen-specific IgG+ and IgA+ antibody secreting cells. Finally, using an Influenza challenge model we found that a nasal or sublingual, but not vaginal, DNA prime/protein boost regimen protected against infectious challenge. These data demonstrate that mucosally applied plasmid DNA complexed to PEI followed by a mucosal protein boost generates sufficient antigen-specific humoral antibody production to protect from mucosal viral challenge.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) infection is characterized by the rapid onset of intestinal T-cell depletion that initiates the progression to AIDS. The induction of protective immunity in the intestinal mucosa therefore represents a potentially desirable feature of a preventive AIDS vaccine. In this study, we have evaluated the ability of an enteric adenovirus, recombinant adenovirus 41 (rAd41), to elicit intestinal and systemic immune responses by different immunization routes, alone or in combination with rAd5. rAd41 expressing HIV envelope (Env) protein induced cellular immune responses comparable to those of rAd5-based vectors after either a single intramuscular injection or a DNA prime/rAd boost. Oral priming with rAd41-Env followed by intramuscular boosting with rAd5-Env stimulated a more potent CD8+ T-cell response in the small intestine than the other immunization regimens. Furthermore, the direct injection of rAd41-Env into ileum together with intramuscular rAd5-Env boosting increased Env-specific cellular immunity markedly in mucosal as well as systemic compartments. These data demonstrate that heterologous rAd41 oral or ileal priming with rAd5 intramuscular boosting elicits enhanced intestinal mucosal cellular immunity and that oral or ileal vector delivery for primary immunization facilitates the generation of mucosal immunity.  相似文献   

14.
Induction of mucosal and cell-mediated immunity is critical for development of an effective vaccine against human immunodeficiency virus (HIV). We compared intramuscular and intranasal immunizations with a DNA vaccine encoding env of HIV-1 and evaluated the QS-21 saponin adjuvant for augmentation of the systemic and mucosal immune responses to HIV-1 in a murine model. Vaccination via the two routes elicited comparable systemic immune responses, and QS-21 consistently enhanced antigen-specific serum immunoglobulin G2a (IgG2a) production, delayed-type hypersensitivity reaction, and cytolytic activity of splenocytes. Intestinal secretory IgA production and cytolytic activity of the mesenteric lymph node cells are preferentially elicited by intranasal immunization, and QS-21 augmented these activities as well. This adjuvant augmented production of interleukin-2 (IL-2) and gamma interferon (IFN-γ) associated with decrease in IL-4 synthesis by antigen-restimulated splenocytes. The serum immunoglobulin subtype profile showed a dominant IgG2a response and less strong IgG1 and IgE production in a QS-21 dose-dependent manner. As expected, enhancements of humoral and cell-mediated immune responses by QS-21 were abrogated by treatment with anti-IL-2 and anti-IFN-γ monoclonal antibodies. These results suggest that the intranasal route of DNA immunization is more efficient than the intramuscular route in inducing mucosal immunity mediated by sIgA and mesenteric lymphocytes. Furthermore, QS-21 is able to act as a mucosal adjuvant in DNA vaccination and demonstrates its immunomodulatory property via stimulation of the Th1 subset. This study emphasizes the importance of the route of immunization and the use of an adjuvant for effective DNA vaccination against HIV-1.  相似文献   

15.
Protection by parenteral immunization with plasmid DNA vaccines against pulmonary tuberculosis (TB) is very modest. In this study, we have investigated the underlying mechanisms for the poor mucosal protective efficacy and the avenues and mechanisms to improve the efficacy of a single i.m. immunization with a monogenic plasmid DNA TB vaccine in a murine model. We show that i.m. DNA immunization fails to elicit accumulation of Ag-specific T cells in the airway lumen despite robust T cell responses in the spleen. Such systemically activated T cells cannot be rapidly mobilized into the airway lumen upon Mycobacterium tuberculosis exposure. However, airway deposition of low doses of soluble mycobacterial Ags in previously immunized mice effectively mobilizes the systemically activated T cells into the airway lumen. A fraction of such airway luminal T cells can persist in the airway lumen, undergo quick, robust expansion and activation and provide marked immune protection upon airway M. tuberculosis exposure. Airway mucosal deposition of soluble mycobacterial Ags was found to create a tissue microenvironment rich in proinflammatory molecules including chemokines and hence conducive to T cell recruitment. Thus, in vivo neutralization of MIP-1alpha or IFN-inducible protein-10 markedly inhibited the accumulation of Ag-specific T cells in the airway lumen. Our data suggest that immunoprotective efficacy on the mucosal surface by i.m. plasmid DNA immunization could be substantially improved by simple mucosal soluble Ag inoculation and restoration of mucosal luminal T cells. Our study holds implication for the future design of DNA vaccination strategies against intracellular infections.  相似文献   

16.
BACKGROUND: A number of tumors express antigens that are recognized by specific cytotoxic T cells. The normal host immune responses, however, are not usually sufficient to cause tumor rejection. Using appropriate immunization strategies, tumor-specific antigens may serve as targets against which tumor-destructive immune responses can be generated. MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis. Here, we have investigated whether DNA and cellular vaccines against MAGE-1 and MAGE-3 can induce antigen-specific anti-tumor immunity and cause rejection of MAGE-expressing tumors. MATERIALS AND METHODS: Mice were immunized against MAGE-1 and MAGE-3 by subcutaneous injection of genetically modified embryonic fibroblasts or intramuscular injection of purified DNA. Mice were injected with lethal doses of B16 melanoma cells expressing the corresponding MAGE antigens or the unrelated protein SIV tat, and tumor development and survival were monitored. RESULTS: Intramuscular expression of MAGE-1 and MAGE-3 by plasmid DNA injection and subcutaneous immunization with syngeneic mouse embryonic fibroblasts transduced with recombinant retroviruses to express these antigens induced specific immunity against tumors expressing MAGE-1 and MAGE-3. Both CD4+ and CD8+ T cells were required for anti-tumor immunity. Coexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) or B7-1 significantly increased anti-tumor immunity in an antigen-specific manner and resulted in a considerable proportion of mice surviving lethal tumor challenge. CONCLUSIONS: Our results suggest that genetic and cellular vaccines against MAGE and other tumor antigens may be useful for the therapy of tumors expressing specific markers, and that GM-CSF and B7-1 are potent stimulators for the induction of antigen-specific tumor immunity.  相似文献   

17.
Induction of mucosal anti-human immunodeficiency virus type 1 (HIV-1) T-cell responses in males and females will be important for the development of a successful HIV-1 vaccine. An HIV-1 envelope peptide, DNA plasmid, and recombinant modified vaccinia virus Ankara (rMVA) expressing the H-2D(d)-restricted cytotoxic T lymphocyte P18 epitope were used as immunogens to test for their ability to prime and boost anti-HIV-1 T-cell responses at mucosal and systemic sites in BALB/c mice. We found of all prime-boost combinations tested, an HIV-1 Env peptide subunit mucosal prime followed by systemic (intradermal) boosting with rMVA yielded the maximal induction of gamma interferon (IFN-gamma) spot-forming cells in the female genital tract and colon. However, this mucosal prime-systemic rMVA boost regimen was minimally immunogenic for the induction of genital, colon, or lung anti-HIV-1 T-cell responses in male mice. We determined that a mucosal Env subunit immunization could optimally prime an rMVA boost in female but not male mice, as determined by the magnitude of antigen-specific IFN-gamma responses in the reproductive tracts, colon, and lung. Defective mucosal priming in male mice could not be overcome by multiple mucosal immunizations. However, rMVA priming followed by an rMVA boost was the optimal prime-boost strategy for male mice as determined by the magnitude of antigen-specific IFN-gamma responses in the reproductive tract and lung. Thus, prime-boost immunization strategies able to induce mucosal antigen-specific IFN-gamma responses were identified for male and female mice. Understanding the cellular and molecular basis of gender-determined immune responses will be important for optimizing induction of anti-HIV-1 mucosal immune responses in both males and females.  相似文献   

18.
Cellular and humoral immune responses induced following murine Chlamydia trachomatis infection confer almost sterile protection against homologous reinfection. On the other hand, immunization with inactivated organism induces little protective immunity in this model system. The underlying mechanism(s) that determines such divergent outcome remains unclear, but elucidating the mechanism will probably be important for chlamydial vaccine development. One of the distinct differences between the two forms of immunization is that chlamydia replication in epithelial cells causes the secretion of a variety of proinflammatory cytokines and chemokines, such as GM-CSF, that may mobilize and mature dendritic cells and thereby enhance the induction of protective immunity. Using a murine model of C. trachomatis mouse pneumonitis lung infection and intrapulmonary adenoviral GM-CSF transfection, we demonstrate that the expression of GM-CSF in the airway compartment significantly enhanced systemic Th1 cellular and local IgA immune responses following immunization with inactivated organisms. Importantly, immunized mice had significantly reduced growth of chlamydia and exhibited less severe pulmonary inflammation following challenge infection. The site of GM-CSF transfection proved important, since mice immunized with inactivated organisms after GM-CSF gene transfer by the i.p. route exhibited little protection against pulmonary challenge, although i.p. immunization generated significant levels of systemic Th1 immune responses. The obvious difference between i.p. and intrapulmonary immunization was the absence of lung IgA responses following i.p. vaccination. In aggregate, the findings demonstrate that the local cytokine environment is critical to the induction of protective immunity following chlamydial vaccination and that GM-CSF may be a useful adjuvant for a chlamydial vaccine.  相似文献   

19.
Salmonella-mediated mucosal cell-mediated immunity.   总被引:1,自引:0,他引:1  
Oral immunization with the recombinant Salmonella typhimurium strain (BRD 847) expressing the C fragment of tetanus toxin (TT) induces brisk Ag-specific mucosal S-IgA and serum Ab responses characterized by strong IgG2a Abs to the encoded antigen. We have constructed an attenuated Salmonella typhimurium (aroA- aroD-) strain that expresses chicken egg albumin (OVA) to further elucidate the role of Salmonella-induced Th1 cell phenotype on mucosal cell-mediated immunity (CMI). Peyer's patches and spleen lymphocytes from mice that received the oral Salmonella-OVA vaccine showed dramatic increases in the percent cell lysis of the H-2b restricted EG7.OVA tumor cell line. These results indicate that a single dose of rSalmonella vaccine antigen vector is required to illicit systemic and mucosal Th1-type responses and CTLs. These results also support the existence of a highly regulated relationship between specific cell-mediated immunity and a branch of the humoral immune system, i.e. mucosal IgA responses.  相似文献   

20.
DNA-plasmids of HIV-1 induce systemic and mucosal immune responses   总被引:4,自引:0,他引:4  
DNA-based immunization has been shown to induce protective immunity against several microbial pathogens including HIV-1. Several routes of DNA vaccination have been exploited. However, the properties of the immune responses seem to differ with the different routes used for DNA delivery, ultimately affecting the outcome of experimental challenge. We measured the primary immune response following one vaccination. This report presents differences associated with three different DNA delivery routes: intramuscular injection, intranasal application, and gene-gun based immunization. Induction of systemic humoral immune responses was achieved most efficiently by either intranasal or gene-gun mediated immunization, followed by intramuscular injection. Mucosal IgA was reproducibly induced by intranasal instillation of the DNA, and found in lung washings, faeces, and vaginal washings. Cytotoxic T cells were not induced by a single immunization, but were observed after three immunizations using intramuscular injections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号