首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triacylglycerols in prokaryotic microorganisms   总被引:1,自引:0,他引:1  
Triacylglycerols (TAG) are fatty acid triesters of glycerol; there are diverse types of TAG with different properties depending on their fatty acid composition. The occurrence of TAG as reserve compounds is widespread among eukaryotic organisms such as yeast, fungi, plants and animals, whereas occurrence of TAG in bacteria has only rarely been described. However, accumulation of TAG seems to be widespread among bacteria belonging to the actinomycetes group, such as species of Mycobacterium, Streptomyces, Rhodococcus and Nocardia. Fatty acids in acylglycerols in cells of Rhodococcus opacus PD630 accounted for up to 87% of the cellular dry weight. TAG biosynthesis, justifying an oleaginous status, seems to be restricted mainly to this group of bacteria, but occurs to a minor extent also in a few other bacteria. The compositions and structures of bacterial TAG vary considerably depending on the microorganism and on the carbon source, and unusual acyl moieties, such as phenyldecanoic acid and 4,8,12 trimethyl tridecanoic acid, are also included. The principal function of bacterial TAG seems to be as a reserve compound. Other functions that have been discussed include regulation of cellular membrane fluidity by keeping unusual fatty acids away from membrane phospholipids, or acting as a sink for reducing equivalents. In recent years, basic aspects of the physiology and biochemistry of bacterial TAG accumulation, and the molecular biology of the lipid inclusion bodies have been reported. TAG are used for nutritional, therapeutic and pharmaceutical purposes and serve as a source of oleochemicals.  相似文献   

2.
The role of the Saccharomyces cerevisae peroxisomal acyl-coenzyme A (acyl-CoA) thioesterase (Pte1p) in fatty acid beta-oxidation was studied by analyzing the in vitro kinetic activity of the purified protein as well as by measuring the carbon flux through the beta-oxidation cycle in vivo using the synthesis of peroxisomal polyhydroxyalkanoate (PHA) from the polymerization of the 3-hydroxyacyl-CoAs as a marker. The amount of PHA synthesized from the degradation of 10-cis-heptadecenoic, tridecanoic, undecanoic, or nonanoic acids was equivalent or slightly reduced in the pte1Delta strain compared with wild type. In contrast, a strong reduction in PHA synthesized from heptanoic acid and 8-methyl-nonanoic acid was observed for the pte1Delta strain compared with wild type. The poor catabolism of 8-methyl-nonanoic acid via beta-oxidation in pte1Delta negatively impacted the degradation of 10-cis-heptadecenoic acid and reduced the ability of the cells to efficiently grow in medium containing such fatty acids. An increase in the proportion of the short chain 3-hydroxyacid monomers was observed in PHA synthesized in pte1Delta cells grown on a variety of fatty acids, indicating a reduction in the metabolism of short chain acyl-CoAs in these cells. A purified histidine-tagged Pte1p showed high activity toward short and medium chain length acyl-CoAs, including butyryl-CoA, decanoyl-CoA and 8-methyl-nonanoyl-CoA. The kinetic parameters measured for the purified Pte1p fit well with the implication of this enzyme in the efficient metabolism of short straight and branched chain fatty acyl-CoAs by the beta-oxidation cycle.  相似文献   

3.
The beta-oxidation and esterification of medium-chain fatty acids were studied in hepatocytes from fasted, fed and fructose-refed rats. The beta-oxidation of lauric acid (12:0) was less inhibited by fructose refeeding and by (+)-decanoyl-carnitine than the oxidation of oleic acid was, suggesting a peroxisomal beta-oxidation of lauric acid. Little lauric acid was esterified in triacylglycerol fraction, except at high substrate concentrations or in the fructose-refed state. With [1-14C]myristic acid (14:0), [1-14C]lauric acid (12:0), [1-14C]octanoic acid (8:0) and [2-14C]adrenic acid (22:4(n - 6] as substrate for hepatocytes from carbohydrate-refed rats, a large fraction of the 14C-labelled esterified fatty acids consisted of newly synthesized palmitic acid (16:0), stearic acid (18:0) and oleic acid (18:1) while intact [1-14C]oleic acid substrate was esterified directly. With [9,10-3H]myristic acid as the substrate, small amounts of shortened 3H-labelled beta-oxidation intermediates were found. With [U-14C]palmitic acid, no shortened fatty acids were detected. It was concluded that when the mitochondrial fatty acid oxidation is down-regulated such as in the carbohydrate-refed state, medium-chain fatty acids can partly be retailored to long-chain fatty acids by peroxisomal beta-oxidation followed by synthesis of C16 and C16 fatty acids which can then stored as triacylglycerol.  相似文献   

4.
Candida tropicalis ATCC 20336 can grow on fatty acids or alkanes as its sole source of carbon and energy, but strains blocked in beta-oxidation convert these substrates to long-chain alpha,omega-dicarboxylic acids (diacids), compounds of potential commercial value (Picataggio et al., Biotechnology 10:894-898, 1992). The initial step in the formation of these diacids, which is thought to be rate limiting, is omega-hydroxylation by a cytochrome P450 (CYP) monooxygenase. C. tropicalis ATCC 20336 contains a family of CYP genes, and when ATCC 20336 or its derivatives are exposed to oleic acid (C(18:1)), two cytochrome P450s, CYP52A13 and CYP52A17, are consistently strongly induced (Craft et al., this issue). To determine the relative activity of each of these enzymes and their contribution to diacid formation, both cytochrome P450s were expressed separately in insect cells in conjunction with the C. tropicalis cytochrome P450 reductase (NCP). Microsomes prepared from these cells were analyzed for their ability to oxidize fatty acids. CYP52A13 preferentially oxidized oleic acid and other unsaturated acids to omega-hydroxy acids. CYP52A17 also oxidized oleic acid efficiently but converted shorter, saturated fatty acids such as myristic acid (C(14:0)) much more effectively. Both enzymes, in particular CYP52A17, also oxidized omega-hydroxy fatty acids, ultimately generating the alpha,omega-diacid. Consideration of these different specificities and selectivities will help determine which enzymes to amplify in strains blocked for beta-oxidation to enhance the production of dicarboxylic acids. The activity spectrum also identified other potential oxidation targets for commercial development.  相似文献   

5.
The metabolism of [1-14C]lignoceric acid (C24:0) and [1-14C]tetracosatetraenoic acid (C24:4, n-6) was studied in normal skin fibroblast cultures and in cultures from patients with defects in peroxisomal beta-oxidation (but normal peroxisomal numbers). Cells from X-linked adrenoleukodystrophy (ALD) patients with a presumed defect in a peroxisomal acyl-CoA synthetase, specific for fatty acids of carbon chain lengths greater than 22 (very-long-chain fatty acids; VLCFA), showed a relatively normal production of radiolabelled CO2 and water-soluble metabolites from [1-14C]C24:0. However, the products of synthesis from acetate de novo (released by beta-oxidation), i.e. C16 and C18 fatty acids, were decreased, and carbon chain elongation of the fatty acid was increased. In contrast, cell lines from two patients with an unidentified lesion in peroxisomal beta-oxidation (peroxisomal disease, PD) showed a marked deficiency in CO2 and water-soluble metabolite production, a decreased synthesis of C16 and C18 fatty acids and an increase in carbon chain elongation. The relatively normal beta-oxidation activity of ALD cells appears to be related to low uptake of substrate, as a defect in beta-oxidation is apparent when measurements are performed on cell suspensions under high uptake conditions. Oxidation of [1-14C]C24:4 was relatively normal in ALD cells and in the cells from one PD patient but abnormal in those from the other. Our data suggest that, despite the deficiency in VLCFA CoA synthetase, ALD cells retain a near normal ability to oxidize both saturated and polyunsaturated VLCFA under some culture conditions. However, acetate released by beta-oxidation of the saturated VLCFA and, to a much lesser degree, the polyunsaturated VLCFA, appears to be used preferentially for the production of CO2 and water-soluble products, and acetate availability for fatty acid synthesis in other subcellular compartments is markedly decreased. It is likely that the increased carbon chain elongation of the saturated VLCFA which is also observed reflects the increased availability of substrate (C24:0) and/or an increase in microsomal elongation activity in ALD cells.  相似文献   

6.
The metabolism of long chain unsaturated fatty acids was studied in cultured fibroblasts from patients with X-linked adrenoleukodystrophy (ALD) and with neonatal ALD. By using [14-14C] erucic acid (22:1(n-9)) as substrate it was shown that the peroxisomal beta-oxidation, measured as chain shortening, was impaired in cells from patients with neonatal ALD. The beta-oxidation of adrenic acid (22:4(n-6)), measured as acid-soluble products, was also reduced in the neonatal ALD cells. The peroxisomal beta-oxidation of [14-14C]erucic acid (22:1(n-9)) and [2-14C]adrenic acid (22:4(n-6)) was normal in cells from X-ALD patients. The beta-oxidation, esterification and chain elongation of [1-14C]arachidonic acid (20:4(n-6)) and [1-14C]eicosapentaenoic acid (20:5(n-3)) was normal in both X-linked ALD and in neonatal ALD. Previous studies suggest that the activation of very long chain fatty acids by a lignoceryl (24:0)-CoA ligase is deficient in X-linked ALD, while the peroxisomal beta-oxidation enzymes are deficient in neonatal ALD. The present results suggest that the peroxisomal very long-chain acyl-CoA ligase is not required for activation of unsaturated C20 and C22 fatty acids and that these fatty acids can be efficiently activated by the long chain acyl-(palmityl)-CoA ligase.  相似文献   

7.
The purpose of this study was to determine whether adult humans can recycle carbon from alpha-linolenic acid (18:3n-3) into saturated (SFA) and monounsaturated (MUFA) fatty acids. Six men and six women consumed 700 mg [U-13C]-18:3n-3. Blood was collected over 21 days and breath over 24h. [13C]-labelled SFA and MUFA were detected in plasma phosphatidylcholine (PC) and triacylglycerol (TAG). Total labelled fatty acid incorporation into SFA and MUFA was five- and 25-fold greater in PC than TAG in men and women, respectively. [13C]-16:0 was the major labelled fatty acid in both fractions. Total [13C] incorporation into SFA and MUFA was 20% greater in men than women, and related positively (r(2) = 0.35, P<0.05) to the fractional recovery of labelled 18:3n-3 as 13CO2 on breath. These results suggest that the extent of partitioning towards beta-oxidation and carbon recycling may regulate the availability of 18:3n-3 for conversion to longer-chain fatty acids.  相似文献   

8.
Escherichia coli grows on long-chain fatty acids after a distinct lag phase. Cells, preadapted to palmitate, grow immediately on fatty acids, indicating that fatty acid oxidation in this bacterium is an inducible system. This hypothesis is supported by the fact that cells grown on palmitate oxidize fatty acids at rates 7 times faster than cells grown on amino acids and 60 times faster than cells grown on a combined medium of glucose and amino acids. The inhibitory effect of glucose may be explained in terms of catabolite repression. The activities of the five key enzymes of beta-oxidation [palmityl-coenzyme A (CoA) synthetase, acyl-CoA dehydrogenase, enoyl-CoA hydrase, beta-hydroxyacyl-CoA dehydrogenase, and thiolase] all vary coordinately over a wide range of activity, indicating that they are all under unit control. The ability of a fatty acid to induce the enzymes of beta-oxidation and support-growth is a function of its chain length. Fatty acids of carbon chain lengths of C(14) and longer induce the enzymes of fatty acid oxidation and readily support growth, whereas decanoate and laurate do not induce the enzymes of fatty acid oxidation and only support limited growth of palmitate-induced cells. Two mutants, D-1 and D-3, which grow on decanoate and laurate were isolated and were found to contain constitutive levels of the beta-oxidation enzymes. Short-chain fatty acids (相似文献   

9.
10.
Chlamydomonas reinhardtii is a model alga for studying triacylglycerol (TAG) accumulation in the photosynthetic production of biofuel. Previous studies were conducted under photoheterotrophic growth conditions in medium supplemented with acetate and/or ammonium. We wanted to demonstrate TAG accumulation under truly photoautotrophic conditions without reduced elements. We first reidentified all lipid components and fatty acids by mass spectrometry, because the currently used identification knowledge relies on data obtained in the 1980s. Accordingly, various isomers of fatty acids, which are potentially useful in tracing the flow of fatty acids leading to the accumulation of TAG, were detected. In strain CC1010 grown under photoautotrophic conditions, TAG accumulated to about 57.5 mol% of total lipids on a mole fatty acid basis after the transfer to nitrogen-deficient conditions. The content of monogalactosyl diacylglycerol, sulfoquinovosyl diacylglycerol, and phosphatidylglycerol decreased drastically. The accumulated TAG contained 16:0 as the major acid and 16:4(4,7,10,13), 18:2(9,12), and 18:3(9,12,15), which are typically found in chloroplast lipids. Additionally, 18:1(11) and 18:3(5,9,12), which are specific to extrachloroplast lipids, were also abundant in the accumulated TAG. Photosynthesis and respiration slowed markedly after the shift to nitrogen-deficient conditions. These results suggest that fatty acids for the production of TAG were supplied not only from chloroplast lipids but also from other membranes within the cells, although the possibility of de novo synthesis cannot be excluded. Under nitrogen-replete conditions, supplementation with a high concentration of CO2 promoted TAG production in the cells grown photoautotrophically, opening up the possibility to the continuous production of TAG using CO2 produced by industry.  相似文献   

11.
Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.  相似文献   

12.
Lipid class and fatty acid compositions were determined in Limacina helicina and Clione limacina from an Arctic fjord and the marginal ice zone around Svalbard. C. limacina had higher levels of neutral lipids, including both alkyldiacylglycerols (ADG) and triacylglycerols (TAG), than L. helicina, which contained mainly TAG. However, considerable heterogeneity in the lipid classes and their fatty acids/alcohols were observed in C. limacina in that only two out of the seven specimens analysed were lipid-rich and contained both ADG and TAG, the others having only low percentages of TAG. In specimens of C. limacina containing ADG, 15:0 and 17:1n-8 were prominent fatty acids in both ADG and TAG. The fatty acids of the TAG of L. helicina were variable but 15:0 and 17:1n-8 were absent. We consider the heterogeneity in the fatty acid compositions of L. helicina to reflect temporal and spatial variability in the animals' predominantly phytoplanktonic and particulate diet, which occasionally includes small copepods. We further consider L. helicina to be the prime food for C. limacina and the noticeable amounts of 22:1 found in one sample of C. limacina to reflect significant input of Calanus either directly or indirectly through their prime food, L. helicina. We view the heterogeneity in the fatty acid compositions of both L. helicina and C. limacina, as well as the ability of C. limacina to biosynthesise WE, ADG, 15:0, and 17:1n-8, as adaptations to a large variation of food availability that enables C. limacina to synthesise lipids rapidly and flexibly. Thus, the lipid biochemistry of C. limacina is important in enabling the species to thrive in strong pulses in polar systems. Revised: 16 August 2000 / Accepted: 17 August 2000  相似文献   

13.
Dicarboxylic acids are excreted in urine when fatty acid oxidation is increased (ketosis) or inhibited (defects in beta-oxidation) and in Reye's syndrome. omega-Hydroxylation and omega-oxidation of C6-C12 fatty acids were measured by mass spectrometry in rat liver microsomes and homogenates, and beta-oxidation of the dicarboxylic acids in liver homogenates and isolated mitochondria and peroxisomes. Medium-chain fatty acids formed large amounts of medium-chain dicarboxylic acids, which were easily beta-oxidized both in vitro and in vivo, in contrast to the long-chain C16-dicarboxylic acid, which was toxic to starved rats. Increment of fatty acid oxidation in rats by starvation or diabetes increased C6:C10 dicarboxylic acid ratio in rats fed medium-chain triacylglycerols, and increased short-chain dicarboxylic acid excretion in urine in rats fed medium-chain dicarboxylic acids. Valproate, which inhibits fatty acid oxidation and may induce Reye like syndromes, caused the pattern of C6-C10-dicarboxylic aciduria seen in beta-oxidation defects, but only in starved rats. It is suggested, that the origin of urinary short-chain dicarboxylic acids is omega-oxidized medium-chain fatty acids, which after peroxisomal beta-oxidation accumulate as C6-C8-dicarboxylic acids. C10-C12-dicarboxylic acids were also metabolized in the mitochondria, but did not accumulate as C6-C8-dicarboxylic acids, indicating that beta-oxidation was completed beyond the level of adipyl CoA.  相似文献   

14.
The beta-oxidation of lignoceric acid (C24:0), hexacosanoic acid (C26:0), and their coenzyme A derivatives was investigated in human skin fibroblast homogenates. The cofactor requirements for oxidation of lignoceric acid and hexacosanoic acid were identical but were different from their coenzyme A derivatives. For example, lignoceric acid and hexacosanoic acid oxidation was strictly ATP dependent whereas the oxidation of the corresponding coenzyme A derivatives was ATP independent. Also the rate of oxidation of coenzyme A derivatives of lignoceric acid or hexacosanoic acid was much higher compared to the free fatty acids. In patients with Zellweger's syndrome, X-linked adrenoleukodystrophy and infantile Refsum's disease, the beta-oxidation of lignoceric and hexacosanoic acids was defective whereas the oxidation of their corresponding coenzyme A derivatives was nearly normal. The results presented in this communication suggest strongly that the beta-oxidation of very-long-chain fatty acids occurs exclusively in peroxisomes. However, the coenzyme A derivatives of very-long-chain fatty acids can be oxidized in mitochondria as well as in peroxisomes. The inability of the mitochondrial system to oxidize free fatty acids may be due to its inability to convert them to their corresponding coenzyme A derivatives. Our results suggest that a specific very-long-chain fatty acyl CoA synthetase may be required for the activation of the free fatty acids and that this synthetase may be deficient in patients with Zellweger's syndrome and possibly X-linked adrenoleukodystrophy, as well. The results presented suggest that substrate specificity and the subcellular localization of the synthetase may regulate the beta-oxidation of very-long-chain fatty acids in the cell.  相似文献   

15.
The gene mutated in X-linked adrenoleukodystrophy (X-ALD) codes for the HsABCD1 protein, also named ALDP, which is a member of the superfamily of ATP-binding cassette (ABC) transporters and required for fatty acid transport across the peroxisomal membrane. Although a defective HsABCD1 results in the accumulation of very long-chain fatty acids in plasma of X-ALD patients, there is still no direct biochemical evidence that HsABCD1 actually transports very long-chain fatty acids. We used the yeast Saccharomyces cerevisiae to study the transport of fatty acids across the peroxisomal membrane. Our earlier work showed that in yeast the uptake of fatty acids into peroxisomes may occur via two routes, either as (1.) free fatty acid or as (2.) acyl-CoA ester. The latter route involves the two peroxisomal half-ABC transporters, Pxa1p and Pxa2p, which form a heterodimeric complex in the peroxisomal membrane. We here report that the phenotype of the pxa1/pxa2Δ yeast mutant, i.e. impaired growth on oleate containing medium and deficient oxidation of oleic acid, cannot only be partially rescued by human ABCD1, but also by human ABCD2 (ALDRP), which indicates that HsABCD1 and HsABCD2 can both function as homodimers. Fatty acid oxidation studies in the pxa1/pxa2Δ mutant transformed with either HsABCD1 or HsABCD2 revealed clear differences suggesting that HsABCD1 and HsABCD2 have distinct substrate specificities. Indeed, full rescue of beta-oxidation activity in cells expressing human ABCD2 was observed with C22:0 and different unsaturated very long-chain fatty acids including C24:6 and especially C22:6 whereas in cells expressing HsABCD1 rescue of beta-oxidation activity was best with C24:0 and C26:0 as substrates.  相似文献   

16.
The parent Escherichia coli K-12 is constitutive for the enzymes of the glyoxylate bypass and adapts to growth on long-chain fatty acids (C(12) to C(18)). It does not utilize medium-chain (C(6) to C(11)) or short-chain (C(4), C(5)) n-monocarboxylic acids. Several mutants of this strain which grow using short- or medium-chain acids, or both, as the sole carbon source were selected and characterized. One mutant (D(1)) synthesizes the beta-oxidation enzymes constitutively and grows on medium-chain but not on short-chain acids. A second (N(3)) is partially derepressed for synthesis of these enzymes and grows both on medium-chain and on short-chain acids. Secondary mutants (N(3)V(-), N(3)B(-), N(3)OL(-)) were derived from N(3). N(3)V(-) grows on even-chain but not on odd-chain acids and exhibits a lesion in propionate oxidation. N(3)B(-) grows on odd-chain but not on even-chain acids and exhibits no crotonase activity as assayed by hydration of crotonyl-CoA. N(3)OL(-) grows on acetate and propionate but does not utilize fatty acids C(4) to C(18); it exhibits multiple deficiencies in the beta-oxidation pathway. Growth on acetate of N(3), but not of the parent strain, is inhibited by 4-pentenoate. Revertants of N(3) which are resistant to growth inhibition by 4-pentenoate (N(3)PR) exhibit loss of ability to grow on short-chain acids but retain the ability to grow on medium-chain and long-chain acids. The growth characteristics of these mutants suggest that in order to grow at the expense of butyrate and valerate, E. coli must be (i) derepressed for synthesis of the beta-oxidation enzymes and (ii) derepressed for synthesis of a short-chain fatty acid uptake system.  相似文献   

17.
The fatty acid pattern in three hydrocarbon-utilizing bacteria during growth on various substrates was examined. The predominant fatty acids in acetate-grown cells were C(16), C(16:1), C(18:1), and Br-C(19) and the major fatty acids in propane-grown cells were C(15), C(17), C(17:1), C(18:1), and Br-C(18). When one organism (Mycobacterium sp. strain OFS) was grown on the n-alkanes from C(13) to C(17), the major fatty acid in the cells was of the same chain length as the substrate. Studies on the incorporation of acetate into the cellular fatty acids of microorganisms growing on C(15) and C(17)n-alkanes suggest that the oxidative products of the substrate are incorporated into the cellular fatty acids without degradation to acetate.  相似文献   

18.
Long chain fatty acids are converted to acyl-CoAs by acyl-CoA synthetase (fatty acid CoA ligase: AMP forming, E.C. 6.2.1.3; ACS). Escherichia coli has a single ACS, FadD, that is essential for growth when fatty acids are the sole carbon and energy source. Rodents have five ACS isoforms that differ in substrate specificity, tissue expression, and subcellular localization and are believed to channel fatty acids toward distinct metabolic pathways. We expressed rat ACS isoforms 1-5 in an E. coli strain that lacked FadD. All rat ACS isoforms were expressed in E. coli fadD or fadDfadR and had ACS specific activities that were 1.6-20-fold higher than the wild type control strain expressing FadD. In the fadD background, the rat ACS isoforms 1, 2, 3, 4 and 5 oxidized [(14)C]oleate at 5 to 25% of the wild type levels, but only ACS5 restored growth on oleate as the sole carbon source. To ensure that enzymes of beta-oxidation were not limiting, assays of ACS activity, beta-oxidation, fatty acid transport, and phospholipid synthesis were also examined in a fadD fadR strain, thereby eliminating FadR repression of the transporter FadL and the enzymes of beta-oxidation. In this strain, fatty acid transport levels were low but detectable for ACS1, 2, 3, and 4 and were nearly 50% of wild type levels for ACS5. Despite increases in beta-oxidation, only ACS5 transformants were able to grow on oleate. These studies show that although ACS isoforms 1-4 variably supported moderate transport activity, beta-oxidation, and phospholipid synthesis and although their in vitro specific activities were greater than that of chromosomally encoded FadD, they were unable to substitute functionally for FadD regarding growth. Thus, membrane composition and protein-protein interactions may be critical in reconstituting bacterial ACS function.  相似文献   

19.
Phthienoic acids constitute a family of dextro-rotary odd-numbered unsaturated fatty acids isolated exclusively from virulent strains of human and bovine tubercle bacilli. In the bacterial cell they are not free and a search for their linked form in complex wall lipids of Mycobacterium tuberculosis (strain Canetti) showed that they esterified trehalose. Structural elucidation of the major phthienoyl trehalose showed the occurrence of five acyl residues located at 2, 2', 3', 4 and 6' positions of trehalose. The acyl substituents were mainly 2,4,6-trimethyl tetracos-2-enoic acid (C27 phthienoic acid) accompanied by its homologs. In addition to these branched fatty acids, straight-chain C16 and C18 acyls composed about 20% of the substituents. The proposed structure is a new one, both for the mycobacterial-specific glycolipid and for the substituted positions on trehalose. Other minor acyl trehaloses were detected in M. tuberculosis (strain Canetti), differing from the major component by the occurrence of an additional hydroxy fatty acid (3-hydroxy-2,4,6-trimethyl tetracosanoic acid) or by the number of acyl substituents. The major glycolipid presented a weak activity in vitro on mitochondrial oxidative phosphorylation. These glycolipids and phthienoic acids could serve as virulence indicators.  相似文献   

20.
Human skin fibroblasts in suspension are able to degrade [1-14C]-labeled alpha- and gamma-methyl branched chain fatty acids such as pristanic and homophytanic acid. Pristanic acid was converted to propionyl-CoA, whereas homophytanic acid was beta-oxidized to acetyl-CoA. Incubation of skin fibroblasts with [1-14C]-labeled fatty acids for longer periods produced radiolabeled carbon dioxide, presumably by further degradation of acetyl-CoA or propionyl-CoA generated by beta-oxidation. Under the same conditions similar products were produced from very long chain fatty acids, such as lignoceric acid. Inclusion of digitonin (> 10 micrograms/ml) in the incubations strongly inhibited carbon dioxide production but stimulated acetyl-CoA or propionyl-CoA production from fatty acids. ATP, Mg2+, coenzyme A, NAD+ and L-carnitine stimulated acetyl-CoA or propionyl-CoA production from [1-14C]-labeled fatty acids in skin fibroblast suspensions. Branched chain fatty acid beta-oxidation was reduced in peroxisome-deficient cells (Zellweger syndrome and infantile Refsum's disease) but they were beta-oxidized normally in cells from patients with X-linked adrenoleukodystrophy (ALD). Under the same conditions, lignoceric acid beta-oxidation was impaired in the above three peroxisomal disease states. These results provide evidence that branched chain fatty acid, as well as very long chain fatty acid, beta-oxidation occurs only in peroxisomes. As the defect in X-linked ALD is in a peroxisomal fatty acyl-CoA synthetase, which is believed to be specific for very long chain fatty acids, we postulate that different synthetases are involved in the activation of branched chain and very long chain fatty acids in peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号