首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CCD cameras have numerous advantages over photographic film for detecting electrons; however the point spread function of these cameras has not been sufficient for single particle data collection to subnanometer resolution with 300kV microscopes. We have adopted spectral signal to noise ratio (SNR) as a parameter for assessing detector quality for single particle imaging. The robustness of this parameter is confirmed under a variety of experimental conditions. Using this parameter, we demonstrate that the SNR of images of either amorphous carbon film or ice embedded virus particles collected on a new commercially available 4kx4k CCD camera are slightly better than photographic film at low spatial frequency (<1/5 Nyquist frequency), and as good as photographic film out to half of the Nyquist frequency. In addition it is slightly easier to visualize ice embedded particles on this CCD camera than on photographic film. Based on this analysis it is realistic to collect images containing subnanometer resolution data (6-9A) using this CCD camera at an effective magnification of approximately 112000x on a 300kV electron microscope.  相似文献   

2.
Electron cryo-microscopy (cryo-EM) images are commonly collected using either charge-coupled devices (CCD) or photographic film. Both film and the current generation of 16 megapixel (4k × 4k) CCD cameras have yielded high-resolution structures. Yet, despite the many advantages of CCD cameras, more than two times as many structures of biological macromolecules have been published in recent years using photographic film. The continued preference to film, especially for subnanometer-resolution structures, may be partially influenced by the finer sampling and larger effective specimen imaging area offered by film. Large format digital cameras may finally allow them to overtake film as the preferred detector for cryo-EM. We have evaluated a 111-megapixel (10k × 10k) CCD camera with a 9 μm pixel size. The spectral signal-to-noise ratios of low dose images of carbon film indicate that this detector is capable of providing signal up to at least 2/5 Nyquist frequency potentially retrievable for 3D reconstructions of biological specimens, resulting in more than double the effective specimen imaging area of existing 4k × 4k CCD cameras. We verified our estimates using frozen-hydrated ε15 bacteriophage as a biological test specimen with previously determined structure, yielding a ~7 ? resolution single particle reconstruction from only 80 CCD frames. Finally, we explored the limits of current CCD technology by comparing the performance of this detector to various CCD cameras used for recording data yielding subnanometer resolution cryo-EM structures submitted to the electron microscopy data bank (http://www.emdatabank.org/).  相似文献   

3.
Detector technology plays a pivotal role in high-resolution and high-throughput cryo-EM structure determination. Compared with the first-generation, single-electron counting direct detection camera (Gatan K2), the latest K3 camera is faster, larger, and now offers a correlated-double sampling mode (CDS). Importantly this results in a higher DQE and improved throughput compared to its predecessor. In this study, we focused on optimizing camera data collection parameters for daily use within a cryo-EM facility and explored the balance between throughput and resolution. In total, eight data sets of murine heavy-chain apoferritin were collected at different dose rates and magnifications, using 9-hole image shift data collection strategies. The performance of the camera was characterized by the quality of the resultant 3D reconstructions. Our results demonstrated that the Gatan K3 operating in CDS mode outperformed standard (nonCDS) mode in terms of reconstruction resolution in all tested conditions with 8 electrons per pixel per second being the optimal dose rate. At low magnification (64kx) we were able to achieve reconstruction resolutions of 149% of the physical Nyquist limit (1.8 Å with a 1.346 Å physical pixel size). Low magnification allows more particles to be collected per image, aiding analysis of heterogeneous samples requiring large data sets. At moderate magnification (105kx, 0.834 Å physical pixel size) we achieved a resolution of 1.65 Å within 8-h of data collection, a condition optimal for achieving high-resolution on well behaved samples. Our results also show that for an optimal sample like apoferritin, one can achieve better than 2.5 Å resolution with 5 min of data collection. Together, our studies validate the most efficient ways of imaging protein complexes using the K3 direct detector and will greatly benefit the cryo-EM community.  相似文献   

4.
We have previously reported the development of AutoEM, a software package for semi-automated acquisition of data from a transmission electron microscope. In continuing efforts to improve the speed of structure determination of macromolecular assemblies by electron microscopy, we report here on the performance of a new generation of 4 K CCD cameras for use in cryo electron microscopic applications. We demonstrate that at 120 kV, and at a nominal magnification of 67000 x, power spectra and signal-to-noise ratios for the new 4 K CCD camera are comparable to values obtained for film images scanned using a Zeiss scanner to resolutions as high as approximately 1/6.5A(-1). The specimen area imaged for each exposure on the 4 K CCD is about one-third of the area that can be recorded with a similar exposure on film. The CCD camera also serves the purpose of recording images at low magnification from the center of the hole to measure the thickness of vitrified ice in the hole. The performance of the camera is satisfactory under the low-dose conditions used in cryo electron microscopy, as demonstrated here by the determination of a three-dimensional map at 15 A for the catalytic core of the 1.8 MDa Bacillus stearothermophilus icosahedral pyruvate dehydrogenase complex, and its comparison with the previously reported atomic model for this complex obtained by X-ray crystallography.  相似文献   

5.
Sub-nanometer resolution structure determination is becoming a common practice in electron cryomicroscopy of macromolecular assemblies. The data for these studies have until now been collected on photographic film. Using cytoplasmic polyhedrosis virus (CPV), a previously determined structure, as a test specimen, we show the feasibility of obtaining a 9 angstroms structure from images acquired from a 4 k x 4 k Gatan CCD on a 200 kV electron cryomicroscope. The match of the alpha-helices in the protein components of the CPV with the previous structure of the same virus validates the suitability of this type of camera as the recording media targeted for single particle reconstructions at sub-nanometer resolution.  相似文献   

6.
Bacteriorhodopsin and ε 15 bacteriophage were used as biological test specimens to evaluate the potential structural resolution with images captured from a 4k × 4k charge-coupled device (CCD) camera in a 300-kV electron cryomicroscope. The phase residuals computed from the bacteriorhodopsin CCD images taken at 84,000× effective magnification averaged 15.7° out to 5.8-Å resolution relative to Henderson’s published values. Using a single-particle reconstruction technique, we obtained an 8.2-Å icosahedral structure of ε 15 bacteriophage with the CCD images collected at an effective magnification of 56,000×. These results demonstrate that it is feasible to retrieve biological structures to a resolution close to 2/3 of the Nyquist frequency from the CCD images recorded in a 300-kV electron cryomicroscope at a moderately high but practically acceptable microscope magnification.  相似文献   

7.
In conventional confocal microscopy, a physical pinhole is placed at the image plane prior to the detector to limit the observation volume. In this work, we present a modular design of a scanning confocal microscope which uses a CCD camera to replace the physical pinhole for materials science applications. Experimental scans were performed on a microscope resolution target, a semiconductor chip carrier, and a piece of etched silicon wafer. The data collected by the CCD were processed to yield images of the specimen. By selecting effective pixels in the recorded CCD images, a virtual pinhole is created. By analyzing the image moments of the imaging data, a lateral resolution enhancement is achieved by using a 20 × / NA = 0.4 microscope objective at 532 nm laser wavelength.  相似文献   

8.
Radioluminescence microscopy (RLM) is a high‐resolution method for imaging radionuclide uptake in live cells within a fluorescence microscopy environment. Although RLM currently provides sufficient spatial resolution and sensitivity for cell imaging, it has not been systematically optimized. This study seeks to optimize the parameters of the system by computational simulation using a combination of numerical models for the system's various components: Monte‐Carlo simulation for radiation transport, 3D optical point‐spread function for the microscope, and stochastic photosensor model for the electron multiplying charge coupled device (EMCCD) camera. The relationship between key parameters and performance metrics relevant to image quality is examined. Results show that Lu2O3:Eu yields the best performance among 5 different scintillator materials, and a thickness: 8 μm can best balance spatial resolution and sensitivity. For this configuration, a spatial resolution of ~20 μm and sensitivity of 40% can be achieved for all 3 magnifications investigated, provided that the user adjusts pixel binning and electron multiplying (EM) gain accordingly. Hence the primary consideration for selecting the magnification should be the desired field of view and magnification for concurrent optical microscopy studies. In conclusion, this study estimates the optimal imaging performance achievable with RLM and promotes further development for more robust imaging of cellular processes using radiotracers.   相似文献   

9.
Applications of direct detection device in transmission electron microscopy   总被引:1,自引:0,他引:1  
A prototype direct detection device (DDD) camera system has shown great promise in improving both the spatial resolution and the signal to noise ratio for electron microscopy at 120–400 keV beam energies (Xuong et al., 2007. Methods in Cell Biology, 79, 721–739). Without the need for a resolution-limiting scintillation screen as in the charge coupled device (CCD), the DDD camera can outperform CCD based systems in terms of spatial resolution, due to its small pixel size (5 μm). In this paper, the modulation transfer function (MTF) of the DDD prototype is measured and compared with the specifications of commercial scientific CCD camera systems. Combining the fast speed of the DDD with image mosaic techniques, fast wide-area imaging is now possible. In this paper, the first large area mosaic image and the first tomography dataset from the DDD camera are presented, along with an image processing algorithm to correct the specimen drift utilizing the fast readout of the DDD system.  相似文献   

10.
To determine the structure of a biological particle to high resolution by electron microscopy, image averaging is required to combine information from different views and to increase the signal-to-noise ratio. Starting from the number of noiseless views necessary to resolve features of a given size, four general factors are considered that increase the number of images actually needed: (1) the physics of electron scattering introduces shot noise, (2) thermal motion and particle inhomogeneity cause the scattered electrons to describe a mixture of structures, (3) the microscope system fails to usefully record all the information carried by the scattered electrons, and (4) image misalignment leads to information loss through incoherent averaging. The compound effect of factors 2-4 is approximated by the product of envelope functions. The problem of incoherent image averaging is developed in detail through derivation of five envelope functions that account for small errors in 11 "alignment" parameters describing particle location, orientation, defocus, magnification, and beam tilt. The analysis provides target error tolerances for single particle analysis to near-atomic (3.5 A) resolution, and this prospect is shown to depend critically on image quality, defocus determination, and microscope alignment.  相似文献   

11.
Practical DNA sequencing in a rugged capillary array electrophoresis system coupled directly to 96-well microtiter plates is demonstrated. A CCD detector was used to monitor all capillaries simultaneously with laser-induced fluorescence at 1.75 frames per second. The reconstructed electropherograms show good signal-to-noise ratios and resolution for the entire capillary array. The system used standard dye labeling and image splitting to obtain fluorescence intensities in two wavelength regions to allow calling up to 410 bases for the DNA sequence. The use of a replaceable poly(ethylene oxide) matrix and a protective poly(vinylpyrrolidone) coating allows high separation speed and short turnaround time for high throughput DNA sequencing. Critical evaluation of the system performance over repeated runs with base calling is presented.  相似文献   

12.
Electron microscopy (EM) in combination with image analysis is a powerful technique to study protein structures at low, medium, and high resolution. Since electron micrographs of biological objects are very noisy, improvement of the signal-to-noise ratio by image processing is an integral part of EM, and this is performed by averaging large numbers of individual projections. Averaging procedures can be divided into crystallographic and non-crystallographic methods. The crystallographic averaging method, based on two-dimensional (2D) crystals of (membrane) proteins, yielded in solving atomic protein structures in the last century. More recently, single particle analysis could be extended to solve atomic structures as well. It is a suitable method for large proteins, viruses, and proteins that are difficult to crystallize. Because it is also a fast method to reveal the low-to-medium resolution structures, the impact of its application is growing rapidly. Technical aspects, results, and possibilities are presented.  相似文献   

13.
Assessment of fluoroscopic image quality has not kept pace with technological developments in interventional imaging equipment. Access to ‘for presentation’ data on these systems has motivated this investigation into a novel quantitative method of measuring image quality. We have developed a statistical algorithm as an alternative to subjective assessment using threshold contrast detail detectability techniques. Using sets of uniformity exposed fluoroscopy frames, the algorithm estimates the minimum contrast necessary for conspicuity of a range of virtual target object areas A. Pixel mean value distributions in a central image region are Gaussian, with standard deviation σ Pixel binning produces background distributions with area A. For 95% confidence of conspicuity a target object must exhibit a minimum contrast of 3.29σ. A range of threshold contrasts are calculated for a range of virtual areas. Analysis on a few seconds of fluoroscopy data is performed remotely and no test object is required. In this study Threshold Index and Contrast Detail curves were calculated for different incident air kerma rates at the detector, different levels of electronic magnification and different types of image processing. A limited number of direct comparisons were made with subjective assessments using the Leeds TO.10 test object. Results obtained indicate that the statistical algorithm is not only more sensitive to changes in levels of detector dose rate and magnification, but also to levels of image processing, including edge-enhancement. Threshold Index curves thus produced could be used as an interventional system optimisation tool and to objectively compare image quality between vendor systems.  相似文献   

14.
Full-field OCT     
Optical coherence tomography (OCT) is an emerging technique for imaging of biological media with micrometer-scale resolution, whose most significant impact concerns ophthalmology. Since its introduction in the early 1990's, OCT has known a lot of improvements and sophistications. Full-field OCT is our original approach of OCT, based on white-light interference microscopy. Tomographic images are obtained by combination of interferometric images recorded in parallel by a detector array such as a CCD camera. Whereas conventional OCT produces B-mode (axially-oriented) images like ultrasound imaging, full-field OCT acquires tomographic images in the en face (transverse) orientation. Full-field OCT is an alternative method to conventional OCT to provide ultrahigh resolution images (approximately 1 microm), using a simple halogen lamp instead of a complex laser-based source. Various studies have been carried, demonstrating the performances of this technology for three-dimensional imaging of ex vivo specimens. Full-field OCT can be used for non-invasive histological studies without sample preparation. In vivo imaging is still difficult because of the object motions. A lot of efforts are currently devoted to overcome this limitation. Ultra-fast full-field OCT was recently demonstrated with unprecedented image acquisition speed, but the detection sensitivity has still to be improved. Other research directions include the increase of the imaging penetration depth in highly scattering biological tissues such as skin, and the exploitation of new contrasts such as optical birefringence to provide additional information on the tissue morphology and composition.  相似文献   

15.
A high performance prototype gamma camera based on the semiconductor radiation detector Cd(Zn)Te is described. The camera features high spatial resolution, high-energy resolution, a reduced dead space on the edge of the field of view, and a compact format. The camera performance was first examined by comparison of small field of view examinations with those from an Elscint SP6HR standard clinical gamma camera. The new camera was found to give equal or improved image quality. The camera was then used for a systematic phantom study of small lesions in a background as would be found in breast cancer imaging. In this study the camera was able to systematically detect smaller, deeper, and fainter lesions. The camera is presently being used in a clinical trial aimed to assess its value in scintimammography where previous limitations of image quality and detector size have restricted the use of the functional imaging techniques. Preliminary results from 40 patients show high sensitivity and specificity with respect to X-ray mammography and surgery.  相似文献   

16.
M C Shastry  S D Luck    H Roder 《Biophysical journal》1998,74(5):2714-2721
A continuous-flow capillary mixing apparatus, based on the original design of Regenfuss et al. (Regenfuss, P., R. M. Clegg, M. J. Fulwyler, F. J. Barrantes, and T. M. Jovin. 1985. Rev. Sci. Instrum. 56:283-290), has been developed with significant advances in mixer design, detection method and data analysis. To overcome the problems associated with the free-flowing jet used for observation in the original design (instability, optical artifacts due to scattering, poor definition of the geometry), the solution emerging from the capillary is injected directly into a flow-cell joined to the tip of the outer capillary via a ground-glass joint. The reaction kinetics are followed by measuring fluorescence versus distance downstream from the mixer, using an Hg(Xe) arc lamp for excitation and a digital camera with a UV-sensitized CCD detector for detection. Test reactions involving fluorescent dyes indicate that mixing is completed within 15 micros of its initiation and that the dead time of the measurement is 45 +/- 5 micros, which represents a >30-fold improvement in time resolution over conventional stopped-flow instruments. The high sensitivity and linearity of the CCD camera have been instrumental in obtaining artifact-free kinetic data over the time window from approximately 45 micros to a few milliseconds with signal-to-noise levels comparable to those of conventional methods. The scope of the method is discussed and illustrated with an example of a protein folding reaction.  相似文献   

17.
The relative slow scanning speed of a galvanometer commonly used in a confocal laser scanning microscopy system can dramatically limit the system performance in scanning speed and image quality, if the data collection is simply synchronized with the galvanometric scanning. Several algorithms for the optimization of the galvanometric CLSM system performance are discussed in this work, with various hardware controlling techniques for the image distortion correction such as pixel delay and interlace line switching; increasing signal-to-noise ratio with data binning; or enhancing the imaging speed with region of interest imaging. Moreover, the pixel number can be effectively increased with Acquire-On-Fly scan, which can be used for the imaging of a large field-of-view with a high resolution.  相似文献   

18.
Slot blot hybridization of membrane-immobilized, single-stranded human DNA with the higher primate-specific alphoid probe D17Z1 is routinely used in forensic science to estimate the amount of DNA in biological samples. Typically, a chemiluminescent signal captured on film records the hybridization, and the quantity of the signal is related to the amount of immobilized DNA. Digital imaging using a cooled CCD camera offers an alternate non-film-based method for image acquisition with comparable sensitivity of detection, a greater dynamic range, enhanced capability of data interpretation, and often faster results than film. In addition, the data support the premise that more accurate and precise human DNA quantification should be obtained by not assuming a linear response of signal to known standards. Instead, quantity should be estimated using a second-order standard curve (R2 = 0.999). Finally, a CCD camera imaging system offers versatility for image capture of different signal sources and analysis of samples on a variety of support media.  相似文献   

19.
We present a novel slit scanning confocal microscope with a CCD camera image sensor and a virtual slit aperture for descanning that can be adjusted during post-processing. A very efficient data structure and mathematical criteria for aligning the virtual aperture guarantee the ease of use. We further introduce a method to reduce the anisotropic lateral resolution of slit scanning microscopes. System performance is evaluated against a spinning disk confocal microscope on identical specimens. The virtual slit scanning microscope works as the spinning disk type and outperforms on thick specimens.  相似文献   

20.
Tracking single particles: a user-friendly quantitative evaluation   总被引:1,自引:0,他引:1  
As our knowledge of biological processes advances, we are increasingly aware that cells actively position sub-cellular organelles and other constituents to control a wide range of biological processes. Many studies quantify the position and motion of, for example, fluorescently labeled proteins, protein aggregates, mRNA particles or virus particles. Both differential interference contrast (DIC) and fluorescence microscopy can visualize vesicles, nuclei or other small organelles moving inside cells. While such studies are increasingly important, there has been no complete analysis of the different tracking methods in use, especially from the practical point of view. Here we investigate these methods and clarify how well different algorithms work and also which factors play a role in assessing how accurately the position of an object can be determined. Specifically, we consider how ultimate performance is affected by magnification, by camera type (analog versus digital), by recording medium (VHS and SVHS tape versus direct tracking from camera), by image compression, by type of imaging used (fluorescence versus DIC images) and by a variety of sources of noise. We show that most methods are capable of nanometer scale accuracy under realistic conditions; tracking accuracy decreases with increasing noise. Surprisingly, accuracy is found to be insensitive to the numerical aperture, but, as expected, it scales with magnification, with higher magnification yielding improved accuracy (within limits of signal-to-noise). When noise is present at reasonable levels, the effect of image compression is in most cases small. Finally, we provide a free, robust implementation of a tracking algorithm that is easily downloaded and installed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号