首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The adherence capacities of M-protein-positive (M+) and M-protein-negative (M-) strains ofStreptococcus pyogenes were compared in human epithelial cells obtained from the pharynx (PEC) or from the buccal mucosa (BEC). Adherence to PEC was related to the presence of M protein (40.5±1.1 M+ and 17.8±0.6 M–S. pyogenes per PEC), whereas BEC showed adherence equally for M+ and M– strains. Different receptor sites may thus be involved on the two cell types. Preincubation of the bacteria with disialogangliosides (1 mg/ml), orN-acetylgalactosamine, ord-galactose (10 g/ml) resulted in diminished adherence of M+ strains to PEC but not to BEC. Chromatography ond-galactose-Sepharose 6B showed specific binding only of M+ group A streptococcal strains to gel beads. M– group A, and groups C and G streptococci did not bind. These observations suggest that the receptors on PEC for group A streptococci are distinct from those on BEC, and that most probably the attachment ofS. pyogenes to human pharyngeal cells occurs by specific, lectin-like binding to galactose residues on epithelial cells.  相似文献   

2.
The ability of M-protein-positive (M+) and M-protein-negative (M) strains (including an M mutant lacking the structural gene for M-protein) ofStreptococcus pyogenes to attach to human pharyngeal, buccal, and tongue epithelial cells was compared. We observed that M+ strains ofS. pyogenes attached in significantly higher numbers to human pharyngeal epithelial cells than to human buccal or tongue cells. M strains did not exhibit high-level binding to any type of epithelial cell. Also, the adhesion of an M+ and an M strain ofS. pyogenes was low to all types of rat epithelial cells tested. The apparent differences in the surface components between human pharyngeal and buccal epithelial cells were confirmed by studies utilizing radiolabeled lectins.Ulex europaeus lectin with a specificity for fucosyl residues, andTriticum vulgaris lectin with a specificity for N-acetyl glucosamine and N-acetyl neuraminic acid residues, bound in higher amounts to human pharyngeal cells than to buccal cells. Pretreatment of pharyngeal epithelial cells with microgram quantities of highly purified type 6 M-protein or miligram quantities of lipoteichoic acid (LTA) derived fromS. pyogenes decreased the subsequent attachment of the organism. However, the binding specificities of3H-LTA were different from those of intact streptococci;3H-LTA bound comparably to human pharyngeal, buccal, and tongue epithelial cells, and it bound in higher quantities to rat epithelial cells. Also, although the adsorption ofS. pyogenes cells to pharyngeal cells was inhibited by the presence of fucose and galactose, these sugars had little effect on the binding of3H-LTA to epithelial cells. In contrast, the high adhesion of M+ strains but not M mutants to pharyngeal cells suggested that M-protein may play an important role. This possibility was supported by the observation that3H-labeled purified type 6 M-protein bound in higher concentrations to human pharyngeal epithelial cells than to human buccal cells. Furthermore, human pharyngeal epithelial cells were estimated to contain larger numbers of binding sites for M-protein than buccal cells, whereas the affinity of M-protein was similar to both cell types. These adsorption parameters are similar to those previously established for intact streptococcal cells.  相似文献   

3.
A new assay was used to study the adhesion ofStreptococcus pyogenes strains to epithelial cells. [3H]thymidine-labeled bacteria were incubated with standardized preparations of epithelial cells collected from oral-pharyngeal surfaces of human volunteers. The mixtures were then centrifuged in 50% Percoll to form a density gradient. Epithelial cells with attached bacteria formed a band near the top of the tube, whereas unattached bacteria were located near the bottom. The epithelial cells were collected on membrane filters, and the number of adherent bacteria was then determined by scintillation counting.The abilities of M-protein-positive (M+) and M-protein-negative (M) strains ofS. pyogenes to attach to human pharyngeal, buccal, and tongue epithelial cells were compared. The results obtained confirmed the significant difference previously shown to exist between the attachment of M+ and M strains to human epithelial cells. M+ strains ofS. pyogenes exhibited a much greater ability to bind to pharyngeal epithelial cells than did M variants. Also, M+ strains were bound in higher numbers to pharyngeal epithelial cells than to buccal or tongue epithelial cells. The adhesion ofS. pyogenes strains to epithelial cells was time dependent, and a significant increase in the adhesion of M+ strains occurred after 3–4 h of exposure of the bacteria to epithelial cells.The adsorption ofS. pyogenes strains to epithelial cells was described by a Langmuir isotherm. With this model, the number of binding sites and the affinities of the streptococci for epithelial cells were estimated. Significantly higher numbers of binding sites were calculated to be present on pharyngeal epithelial cells for M+ strains ofS. pyogenes than on buccal cells. However, the affinity of the organisms was similar for both types of cells.Adsorption of M+ strains to human pharyngeal epithelial cells was inhibited by certain galactosides and fucose, but not by glucose or xylose. This suggests that saccharide moities play a role in the binding of M+ strains ofS. pyogenes to human pharyngeal epithelial cells.  相似文献   

4.
Prior treatment of pharyngeal epithelial cells (PEC) with lipoteichoic acid (LTA) derived fromStaphylococcus epidermidis produced a marked inhibition of adherence of the homologous strain and two heterologous strains. The inhibition was dose dependent and saturable with 100 µg/ml of LTA. However, pretreatment of PEC with deacylated LTA did not block the adherence of the three strains tested. A similar but less marked blocking effect on the adherence ofS. epidermidis to PEC was also observed with LTAs derived fromS. aureus andStreptococcus pyogenes. On treatment of bacteria with substances capable of binding to LTA, such as polyclonal mouse anti-LTA antibodies or with human albumin, a marked inhibition of bacterial adherence was observed. Immunofluorescence studies showed that anti-LTA antiserum bound readily to the surface of bacterial cells. These findings provide clear evidence that the lipid component of LTA located on the bacterial surface is centrally involved in the adherence ofS. epidermidis to human mucosal cells.  相似文献   

5.

Background  

Collagen-like surface proteins Scl1 and Scl2 on Streptococcus pyogenes contain contiguous Gly-X-X triplet amino acid motifs, the characteristic structure of human collagen. Although the potential role of Scl1 in adhesion has been studied, the conclusions may be affected by the use of different S. pyogenes strains and their carriages of various adhesins. To explore the bona fide nature of Scl1 in adherence to human epithelial cells without the potential interference of other streptococcal surface factors, we constructed a scl1 isogenic mutant from the Scl2-defective S. pyogenes strain and a Scl1-expressed Escherichia coli.  相似文献   

6.

Background  

Flow cytometry based adherence assay is a potentially powerful but little used method in the study of bacterial binding to host structures. We have previously characterized a glycoprotein-binding activity in Streptococcus pyogenes called 'strepadhesin' binding to thyroglobulin, submaxillar mucin, fetuin and asialofetuin. We have identified surface-associated pullulanase (PulA) and cysteine protease (SpeB) as carriers of strepadhesin activity. In the present paper, we investigated the use of flow cytometry as a method to study the binding of Rgg, SpeB and PulA knock-out strains to cultured human epithelial cells.  相似文献   

7.
The surface-located M protein functions to protect Streptococcus pyogenes (the group A streptococcus) from phagocytosis by polymorphonuclear leukocytes. It has been suggested that this protection results from the ability of M protein to bind factor H, a serum protein that can inhibit the activation of complement. Among different serological variants of M protein, the C-repeat domain is highly conserved and is exposed on the bacterial surface. This domain has been implicated in binding to complement factor H and in M-protein-mediated adherence of streptococci to human keratinocytes in the cutaneous epithelium. In this study, we constructed an S. pyogenes mutant strain which expresses an M6 protein from which the entire C-repeat domain was deleted. As predicted, this mutant did not adhere well to human keratinocytes and was unable to bind to factor H. Unexpectedly, the mutant was able to survive and multiply in human blood. Therefore, while the binding of factor H and the facilitation of adherence to keratinocytes appear to involve recognition of the C-repeat domain, a region of the M-protein molecule distinct from the C-repeat domain confers upon S. pyogenes its ability to resist phagocytosis.  相似文献   

8.
Aims: This study compared the in vitro activity of telithromycin with that of azithromycin against 438 Streptococcus pyogenes and 198 Streptococcus pneumoniae, isolated over the period 2005–2007 from specimens of different human origin obtained in three Piemonte Region’s hospitals. Methods and Results: The determination of antimicrobial activity was evaluated by the microdilution broth method and the erythromycin‐resistant (Ery‐R) phenotypes by the triple‐disc test. Exactly 78·8% of S. pyogenes and 69·2% of S. pneumoniae were erythromycin‐susceptible (Ery‐S). Concerning S. pyogenes, telithromycin was active against M and inducible MLSB, subtype‐C, phenotypes but not against constitutive MLSB strains. Telithromycin acted well against all S. pneumoniae, irrespective of their mechanism of macrolide‐resistance. On the contrary, the Ery‐R isolates, both S. pyogenes and S. pneumoniae, were resistant to azithromycin. Conclusions: Our results indicate that macrolide resistance in streptococci still persist in northwest Italy (21·2% of S. pyogenes and 30·8% of S. pneumoniae) and that telithromycin is confirmed as being extremely active even against recent clinical Ery‐R streptococcal isolates. Significance and Impact of the Study: The present study emphasizes that an active surveillance of the phenotype distribution and antibacterial resistance in streptococci is essential in guiding the effective use of empirical treatment option for streptococcal infections, also at regional level.  相似文献   

9.
Most adenoviruses bind to the coxsackie- and adenovirus receptor (CAR). Surprisingly, CAR is not expressed apically on polarized cells and is thus not easily available to viruses. Consequently, alternative mechanisms for entry of coxsackievirus and adenovirus into cells have been suggested. We have found that tear fluid promotes adenovirus infection, and we have identified human lactoferrin (HLf) as the tear fluid component responsible for this effect. HLf alone was found to promote binding of adenovirus to epithelial cells in a dose-dependent manner and also infection of epithelial cells by adenovirus. HLf was also found to promote gene delivery from an adenovirus-based vector. The mechanism takes place at the binding stage and functions independently of CAR. Thus, we have identified a novel binding mechanism whereby adenovirus hijacks HLf, a component of the innate immune system, and uses it as a bridge for attachment to host cells.  相似文献   

10.
The collagen domain, which is defined by the presence of the Gly‐X‐Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen‐like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall‐anchored. These proteins contain the rod‐shaped collagenous domain proximal to cell surface, as well as a variety of outermost non‐collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well‐characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation‐fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.  相似文献   

11.
Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn‐binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn‐binding proteins bind to Fn to form a bridge to α5β1‐integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn‐binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn‐binding proteins have received focus as non‐M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn‐binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates.  相似文献   

12.
The yeastCandida albicans coaggregates with a variety of streptococcal species, an interaction that may promote oral colonization by yeast cells.C. albicans andCandida tropicalis are the yeasts most frequently isolated from the human oral cavity and our data demonstrate that both these species bind toStreptococcus gordonii NCTC 7869 while two otherCandida species (Candida krusei andCandida kefyr) do not. Adherence ofC. albicans was greatest when the yeast had been grown at 30° C to mid-exponential growth phase. For 21 strains ofC. albicans there was a positive correlation between the ability to adhere toS. gordonii and adherence to experimental salivary pellicle. Whole saliva either stimulated or slightly inhibited adherence ofC. albicans toS. gordonii depending on the streptococcal growth conditions. The results suggest that the major salivary adhesins and coaggregation adhesins ofC. albicans are co-expressed.  相似文献   

13.
Abstract

Streptococcus pyogenes is a Gram-positive human bacterial pathogen that causes pharyngitis, tonsillitis, skin infections (impetigo, erysipelis, and other forms of pyoderma), acute rheumatic fever (ARF), scarlet fever (SF), poststreptococcal glomerulonephritis (PSGN), a streptococcal toxic shock syndrome (STSS), and necrotizing fasciitis. These infections are some of the most economically and medically important conditions that affect humans. For example, globally, ARF is the most common cause of pediatric heart disease. It is estimated that in India more than six million school-aged children suffer from rheumatic heart disease (1). In the United States, “sore throat” is the third most common reason for physician office visits and S. pyogenes is recovered from about 30% of children with this complaint (2). It has been estimated that there are 25–35 million cases of streptococcal pharyngitis per year in the United States, and these infections cause 1–2 billion dollars per year in direct health care costs (3,4). Although the continued great morbidity and mortality caused by S. pyogenes in developing nations, the significant health care financial burden attributable to group A streptococci in the United States, and increasing levels of antibiotic resistance (5), have highlighted the need for a fuller understanding of the molecular pathogenesis of streptococcal infection, it has been the relatively recent intercontinental increase in streptococcal disease frequency and severity (6,7) that has resulted in renewed interest in S. pyogenes virulence factors and host-parasite interactions.  相似文献   

14.
The present study was carried out to determine the surface hydrophobicity of group A streptococcal strains responsible for rheumatic fever (RF), "rheumatogenic" strains (RG strains) and strains causing glomerulonephritis, "nephritogenic" strains (NG strains) in relation to their adhesion to human pharyngeal cells. Scanning electronmicroscopic (SEM) studies were carried out to the difference, if any, in the adherence of group A streptococci (M type 5) to pharyngeal and buccal cells (PEC and BEC). By employing two techniques for hydrophobicity determination, salt aggregation titre (SAT) and n-hexadecane binding technique, it was observed that RG strains (M5, M1 and M6) were more hydrophobic than NG strain, M49. However, NG strain M12 was almost equally as hydrophobic as RG strains. The adherence of RG strains, except M1 and M24, to PEC was greater in number than that of NG strains. Although M1 strain was hydrophobic, its adherence to PEC was less. Pepsin and trypsin treatment with streptococci reduced the hydrophobicity and adherence of RG and NG strains to PEC. SEM studies revealed firmly adhered indigenous bacteria on PEC and BEC. Streptococci (M5) adhered more to PEC than to BEC. SEM studies also showed that PEC had a peculiar ultrastructural surface feature to which streptococci adhered. These findings suggest that streptococcal hydrophobicity alone does not determine their adhesion to PEC. The surface nature of PEC might be a characteristic feature of the epithelial cells that allows streptococci to adhere and colonize or it might be a consequence of streptococcal adhesion.  相似文献   

15.
Streptococcus pyogenes is a bacterium that causes systemic diseases, such as pharyngitis and toxic shock syndrome, via oral- or nasal-cavity infection. S. pyogenes produces various molecules known to function with serum components that lead to bacterial adhesion and invasion in human tissues. In this study, we identified a novel S. pyogenes adhesin/invasin. Our results revealed that CAMP factor promoted streptococcal adhesion and invasion in pharyngeal epithelial Detroit562 cells without serum. Recombinant CAMP factor initially localized on the membranes of cells and then became internalized in the cytosol following S. pyogenes infection. Additionally, CAMP factor phosphorylated phosphoinositide 3-kinase and serine–threonine kinase in the cells. ELISA results demonstrate that CAMP factor affected the amount of phosphorylated phosphoinositide 3-kinase and serine–threonine kinase in Detroit562 cells. Furthermore, CAMP factor did not reverse the effect of phosphoinositide 3-kinase knockdown by small interfering RNA in reducing the level of adhesion and invasion of S. pyogenes isogenic cfa-deficient mutant. These results suggested that S. pyogenes CAMP factor activated the phosphoinositide 3-kinase/serine–threonine kinase signaling pathway, promoting S. pyogenes invasion of Detroit562 cells without serum. Our findings suggested that CAMP factor played an important role on adhesion and invasion in pharyngeal epithelial cells.  相似文献   

16.
The adherence ofCandida yeasts to monolayers of human intestinal epithelium was studied in order to determine the specific and nonspecific mechanisms that might contribute to yeast adherence. Multiple factors were shown to significantly affect the adherence of yeasts to intestinal cells. It was demonstrated that hydrophobic yeasts adhered two times greater than normal yeasts, and positively charged yeasts adhered ten times greater than normal yeasts to monolayers of intestinal epithelium. The binding of yeasts to the intestinal cells was saturable and was most effectively blocked by mucin, which caused an 83% reduction in adherence, whereas the addition ofd-glucose caused a 41% reduction in adherence. Aggregation or coadherence of yeasts occurred as the yeast inocula were increased.Candida appears to possess the ability to adhere to living tissue by several mechanisms, such as adhesin-receptor interactions, nonspecific hydrophobic and ionic bonding, and aggregation or coadherence. This is the first demonstration of multiple forces that may act simultaneously in the process of adherence of yeasts to living cells.  相似文献   

17.
Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N‐terminal fragment of streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N‐ terminal fragment is hypervariable: there are more than 200 different M types. In this study, an intranasal live bacterial vaccine comprising 10 strains of Lactococcus lactis, each expressing one N‐terminal fragment of M protein, has been developed. Live bacterial‐vectored vaccines cost less to manufacture because the processes involved are less complex than those required for production of protein subunit vaccines. Moreover, intranasal administration does not require syringes or specialized personnel. Evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All 10 strains combined in a 10‐valent vaccine (M×10) induced serum and bronchoalveolar lavage IgG titers that ranged from three‐ to 10‐fold those of unimmunized mice. After intranasal challenge with M28 streptococci, survival of M×10‐immunized mice was significantly higher than that of unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of M×10‐immunized mice did not differ significantly from that of unimmunized mice. Mx‐10 immunized mice had significantly less S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge than did unimmunized mice. Our L. lactis‐based vaccine may provide an alternative solution to development of broadly protective group A streptococcal vaccines.
  相似文献   

18.
Thirty-eight strains ofCorynebacterium pyogenes isolated from cases of heifer- and dry-cow mastitis and from other infections of sheep, cows, pigs, and man were screened for agglutination of sheep erythrocytes. Bacteria grown either in serum broth or on blood agar in the presence of CO2 hemagglutinated. Performance of titrations at 4°C avoided the hemolytic effects ofC. pyogenes. Erythrocytes of cat, chicken, cow, dog, guinea pig, horse, man (Group A), pig, and rabbit were also agglutinated. Pretreatment of sheep erythrocytes with trypsin, pepsin, A1 proteinase or pronase had no effect on agglutinability. Pretreatment ofC. pyogenes with pronase, but not with trypsin, A1 proteinase, or pepsin, abolished hemagglutinating capacity. The hemagglutinin was inactivated by exposure to 60°C for 10 min. Agglutination of sheep erythrocytes was inhibited by five glycoproteins. None of 12 mono-, di-, or trisaccharides nor heparin, chondroitin sulfate, or dextrin inhibited hemagglutination. These data suggest that the receptor may possibly be an oligohexosyl group of a glycoconjugate of lipid nature. Although a few cells of three mastitic strains ofC. pyogenes possessed fimbriae-like surface structures, no correlation between fimbriation and hemagglutinating activity was apparent.  相似文献   

19.
Invasion of epithelial cells by Shigella is an early step in their pathogenesis. Adherence is generally presumed to be a prerequisite for invasion. This study examined the possibility of intestinal mucins serving as initial binding sites for clinical isolates of S. boydii and S. sonnei. The interactions of Shigella with rat and human small intestinal and colonic mucin were investigated. In solid phase binding assays, [35S] labelled Shigella did not show any preferential binding to rat/human small intestinal mucin or to rat colonic mucin. On the other hand, Shigella bound specifically to human colonic mucin in a concentration-dependent manner. This specific binding to human colonic mucin was not by weak hydrophobic interactions and could not be attributed to the presence of contaminating glycolipids in the mucin preparation. The human colonic mucin receptor was sensitive to periodate treatment suggesting the involvement of the carbohydrate portion of the mucin. Reduction and alkylation of mucin enhanced adherence probably by exposing buried binding sites. The monosaccharides present in mucins were ineffective as hapten inhibitors as was the lectin wheat germ agglutinin suggesting that the mucin receptor is a more complex one. This study identifies, for the first time, the presence of a specific Shigella-binding site on the carbohydrate portion of human colonic mucin, which is not present in rat colonic mucin or in rat/human small intestinal mucin.  相似文献   

20.
Arcanobacterium pyogenes is a commensal and an opportunistic pathogen of economically important livestock, causing diseases as diverse as mastitis, liver abscessation and pneumonia. This organism possesses a number of virulence factors that contribute to its pathogenic potential. A. pyogenes expresses a cholesterol-dependent cytolysin, pyolysin, which is a haemolysin and is cytolytic for immune cells, including macrophages. Expression of pyolysin is required for virulence and this molecule is the most promising vaccine candidate identified to date. A. pyogenes also possesses a number of adherence mechanisms, including two neuraminidases, the action of which are required for full adhesion to epithelial cells, and several extracellular matrix-binding proteins, including a collagen-binding protein, which may be required for adhesion to collagen-rich tissue. A. pyogenes also expresses fimbriae, which are similar to the type 2 fimbriae of Actinomyces naeslundii, and forms biofilms. However, the role of these factors in the pathogenesis of A. pyogenes infections remains to be elucidated. A. pyogenes also invades and survives within epithelial cells and can survive within J774A.1 macrophages for up to 72 h, suggesting an important role for A. pyogenes interaction with host cells during pathogenesis. The two component regulatory system, PloSR, up-regulates pyolysin expression and biofilm formation but down-regulates expression of proteases, suggesting that it may act as a global regulator of A. pyogenes virulence. A. pyogenes is a versatile pathogen, with an arsenal of virulence determinants. However, most aspects of the pathogenesis of infection caused by this important opportunistic pathogen remain poorly characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号