首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
T cell anergy is one of the mechanisms of immunological tolerance. We examined in this study the distinct responses of Th1 and Th2 cells to in vitro anergic stimulation using Th1 and Th2 cells from two strains of T cell receptor transgenic mice. Proliferation of the Th2 cells was difficult to suppress by anergic stimulation, while that of Th1 cells was significantly inhibited even by weak stimulation. However, IL-4 production by Th2 cells was definitely reduced by anergic stimulation, although the inhibition level of IL-4 was lower than that of IFN-gamma production by Th1 cells. We also examined the reversal of anergy in both subsets. While both the anergized Th1 and Th2 cells responded to IL-2 stimulation, only the anergy of the Th2 cells could be reversed. This result indicates that progression of the cell cycle was not sufficient for anergy reversal in Th1 cells. Our findings indicate that the induction and reversal of T cell anergy might be affected by the distinct signaling features of Th1 and Th2 cells.  相似文献   

2.
Anergy is an important mechanism for the maintenance of peripheral tolerance and avoidance of autoimmunity. The up-regulation of E3 ubiqitin ligases, including GRAIL (gene related to anergy in lymphocytes), is a key event in the induction and preservation of anergy in T cells. However, the mechanisms of GRAIL-mediated anergy induction are still not completely understood. We examined which proteins serve as substrates for GRAIL in anergic T cells. Arp2/3-5 (actin-related protein 2/3 subunit 5) and coronin 1A were polyubiquitinated by GRAIL via Lys-48 and Lys-63 linkages. In anergic T cells and GRAIL-overexpressed T cells, the expression of Arp2/3-5 and coronin 1A was reduced. Furthermore, we demonstrated that GRAIL impaired lamellipodium formation and reduced the accumulation of F-actin at the immunological synapse. GRAIL functions via the ubiquitination and degradation of actin cytoskeleton-associated proteins, in particular Arp2/3-5 and coronin 1A. These data reveal that GRAIL regulates proteins involved in the actin cytoskeletal organization, thereby maintaining the unresponsive state of anergic T cells.  相似文献   

3.
4.
5.
Repeated administration of the superantigen staphylococcal enterotoxin A to mice transduces a state of anergy in the CD4+ T cell compartment, characterized by inhibition of IL-2 production and clonal expansion in vivo. In contrast to what has been reported on anergic T cell clones in vitro, culture of in vivo anergized CD4+ T cells in the presence of exogenous IL-2 did not overcome the block in responsiveness. In this study, we demonstrate that CD4+ T cells from mice anergized with staphylococcal enterotoxin A also exhibit a reduced proliferative capacity in response to IL-7 and IL-15, cytokines that share a common gamma-chain with the IL-2R. Flow-cytometric analysis revealed only modest changes in the expression of the different IL-2R chains. In a number of experiments, our results also provide evidence that excludes a major role of the IL-2R alpha-chain in this system. According to these results, the inability of anergic cells to respond to IL-2 is not mainly due to a down-regulation of the high affinity IL-2R, but to a perturbation in intracellular signaling. Our study confirmed that the activation and tyrosine phosphorylation of Janus-associated kinase 3 and STAT5 were considerably weaker after anergy induction. Moreover, anergic CD4+ T cells showed significantly reduced DNA-binding ability to STAT5-specific elements. Taken together, we suggest that the observed IL-2 unresponsiveness in anergic CD4+ T cells could be due to a defect in signaling through the common gamma-chain of the IL-2R.  相似文献   

6.
Costimulation (signal 2) has been proposed to inhibit the induction of T cell clonal anergy by either directly antagonizing negative signals arising from TCR engagement (signal 1) or by synergizing with signal 1 to produce IL-2, which in turn leads to proliferation and dilution of negative regulatory factors. To better define the cellular events that lead to the induction of anergy, we used the immunosuppressive agent rapamycin, which blocks T cell proliferation in late G1 phase but does not affect costimulation-dependent IL-2 production. Our data demonstrate that full T cell activation (signal 1 plus 2) in the presence of rapamycin results in profound T cell anergy, despite the fact that these cells produce copious amounts of IL-2. Similar to conventional anergy (induction by signal 1 alone), the rapamycin-induced anergic cells show a decrease in mitogen-activated protein kinase activation, and these cells can be rescued by culture in IL-2. Interestingly, the rapamycin-induced anergic cells display a more profound block in IL-3 and IFN-gamma production upon rechallenge. Finally, in contrast to rapamycin, full T cell activation in the presence of hydroxyurea (which inhibits the cell cycle in early S phase) did not result in anergy. These data suggest that it is neither the direct effect of costimulation nor the subsequent T cell proliferation that prevents anergy induction, but rather the biochemical events that occur upon progression through the cell cycle from G1 into S phase.  相似文献   

7.
Anergy is an important mechanism of maintaining peripheral immune tolerance. T cells rendered anergic are refractory to further stimulation and are characterized by defective proliferation and IL-2 production. We used a model of in vivo anergy induction in murine CD8+ T cells to analyze the initial signaling events in anergic T cells. Tolerant T cells displayed reduced phospholipase Cgamma activation and calcium mobilization, indicating a defect in calcium signaling. This correlated with a block in nuclear localization of NFAT1 in anergic cells. However, we found that stimulation of anergic, but not naive T cells induced nuclear translocation of NFAT2. This suggested that NFAT2 is activated preferentially by reduced calcium signaling, and we confirmed this hypothesis by stimulating naive T cells under conditions of calcium limitation or partial calcineurin inhibition. Thus, our work provides new insight into how T cell stimulation conditions might dictate specific NFAT isoform activation and implicates NFAT2 involvement in the expression of anergy-related genes.  相似文献   

8.
9.
Tolerance in T lymphocytes can result from clonal anergy, or paralysis, of Ag-specific T cells. To investigate the molecular mechanisms responsible for anergy, a system in which tolerance can be induced in vitro was employed. Anergy, as defined by long-lived nonresponsiveness to normal antigenic stimulation for IL-2 production, was produced in cloned murine CD4+ Th1 cells. Here we report that such anergic Th1 cells express constitutively reduced amounts of the protein tyrosine kinase p56lck and constitutively elevated levels of the protein tyrosine kinase p59fyn. Because protein tyrosine phosphorylation is known to be important for the normal induction of IL-2 synthesis, these results suggest that T cell anergy may be maintained, at least in part, by alterations in tyrosine phosphorylation signaling events.  相似文献   

10.
11.
Fingerprints of anergic T cells   总被引:7,自引:0,他引:7  
Peripheral T cell tolerance may result from activation-induced cell death [1], anergy [1], and/or immune response modulation by regulatory T cells [2]. In mice that express a transgenic receptor specific for peptide 111-119 of influenza hemagglutinin presented by E(d) class II MHC molecules as well as hemagglutinin under control of the immunoglobulin-kappa promoter, we have found that anergic T cells [3] can also have immunoregulatory function and secrete IL-10 [4]. In order to obtain information on molecular mechanisms involved in anergy and immunoregulation, we have compared expression levels of 1176 genes in anergic, naive, and recently activated CD4+ T cells of the same specificity by gene array analysis. The results provide a plausible explanation for the anergic phenotype in terms of proliferation, provide new information on the surface phenotype of in vivo-generated anergic CD4+ T cells, and yield clues with regard to new candidate genes that may be responsible for the restricted cytokine production of in vivo-anergized CD4+ T cells. The molecular fingerprints of such T cells should enable the tracking of this small population in the normal organism and the study of their role in immunoregulation.  相似文献   

12.
Chronic exposure of mature T cells with specificity for self-Ags can lead to the induction of a nonfunctional state which is referred to as T cell anergy. It is unclear whether anergic T cells are destined for cell death and thereby harmless or whether they can contribute to the induction of autoimmunity and/or regulation of anti-self reactivity. We have begun to address this issue. In a recent study, we showed that a population of mature CD4-CD8- T cells that express a transgenic TCR specific for the Ld MHC class I molecule are rendered anergic in Ld-expressing mice. In this study, we show that this population of anergic T cells possess a lower activation threshold for the induction of CD25 and CD69 in response to stimulation by antigenic ligands. Furthermore, these anergic T cells undergo extensive proliferation when stimulated with a low-affinity ligand in the presence of an exogenous source of IL-2. Biochemical analysis of the early intracellular signaling events of these in vivo anergized T cells showed that they have a signaling defect at the level of ZAP-70 and linker for the activation of T cell (LAT) phosphorylation. They also exhibit a defect in mobilization of intracellular calcium in response to TCR signaling. However, these anergic T cells demonstrate no defect in SLP-76 phosphorylation and extracellular signal-regulated kinase 1/2 activation. These biochemical characteristics of the anergic T cells were associated with an elevated level of Fyn, but not Lck expression. The potential contributions of these anergic T cells in the induction and/or regulation of autoimmune responses are discussed.  相似文献   

13.
Acquisition of the anergy phenotype in T cells is blocked by inhibitors of protein synthesis and calcineurin activity, suggesting that anergic T cells may have a unique genetic program. Retroviral transduction of hemopoietic stem cells from TCR transgenic mice and subsequent reconstitution of syngeneic mice to express the E3 ubiquitin ligase, gene related to anergy in lymphocytes (GRAIL), or an enzymatically inactive form, H2N2 GRAIL, allowed analysis of the role of GRAIL in T cell anergy in vivo. Constitutive expression of GRAIL was sufficient to render naive CD4 T cells anergic, however, when the enzymatically inactive form H2N2 GRAIL was expressed, it functioned as a dominant negative of endogenous GRAIL and blocked the development of anergy. These data provide direct evidence that a biochemical pathway composed of GRAIL and/or GRAIL-interacting proteins is important in the development of the CD4 T cell anergic phenotype in vivo.  相似文献   

14.
15.
Murine Th1 clones that receive signals through their TCR in the absence of APC-derived co-stimulatory signals do not produce IL-2 and instead become anergic, i.e., they are subsequently unable to produce IL-2 in response to Ag and normal APC. The critical cellular event required to prevent the induction of this anergic state appears to be T cell proliferation. Anergy was induced when T cell clones were stimulated under conditions where both TCR occupancy and costimulatory signals were provided but where proliferation in response to the IL-2 produced was prevented. Once induced, anergy could be reversed if the T cells were allowed to undergo multiple rounds of cell division. These results show that anergy is induced as a consequence of TCR occupancy in the absence of cell division; this can be achieved either by limiting IL-2 production because of deficient provision of co-stimulatory signals or by preventing response to IL-2.  相似文献   

16.
Immature dendritic cells (DC) represent potential clinical tools for tolerogenic cellular immunotherapy in both transplantation and autoimmunity. A major drawback in vivo is their potential to mature during infections or inflammation, which would convert their tolerogenicity into immunogenicity. The generation of immature DC from human bone marrow (BM) by low doses of GM-CSF (lowGM) in the absence of IL-4 under GMP conditions create DC resistant to maturation, detected by surface marker expression and primary stimulation by allogeneic T cells. This resistence could not be observed for BM-derived DC generated with high doses of GM-CSF plus IL-4 (highGM/4), although both DC types induced primary allogeneic T cell anergy in vitro. The estabishment of the anergic state requires two subsequent stimulations by immature DC. Anergy induction was more profound with lowGM-DC due to their maturation resistance. Together, we show the generation of immature, maturation-resistant lowGM-DC for potential clinical use in transplant rejection and propose a two-step-model of T cell anergy induction by immature DC.  相似文献   

17.
Ig-PLP1 is an Ig chimera expressing proteolipid protein-1 (PLP1) peptide corresponding to aa residues 139-151 of PLP. Newborn mice given Ig-PLP1 in saline on the day of birth and challenged 7 wk later with PLP1 peptide in CFA develop an organ-specific neonatal immunity that confers resistance against experimental allergic encephalomyelitis. The T cell responses in these animals comprise Th2 cells in the lymph node and anergic Th1 lymphocytes in the spleen. Intriguingly, the anergic splenic T cells, although nonproliferative and unable to produce IFN-gamma or IL-4, secrete significant amounts of IL-2. In this work, studies were performed to determine whether costimulation through B7 molecules plays any role in the unusual form of splenic Th1 anergy. The results show that engagement of either B7.1 or B7.2 with anti-B7 Abs during induction of EAE in adult mice that were neonatally tolerized with Ig-PLP1 restores and exacerbates disease severity. At the cellular level, the anergic splenic T cells regain the ability to proliferate and produce IFN-gamma when stimulated with Ag in the presence of either anti-B7.1 or anti-B7.2 Ab. However, such restoration was abolished when both B7.1 and B7.2 molecules were engaged simultaneously, indicating that costimulation is necessary for reactivation. Surprisingly, both anti-B7.1 and anti-B7.2 Abs triggered splenic dendritic cells to produce IL-12, a key cytokine required for restoration of the anergic T cells. Thus, recovery from neonatally induced T cell anergy requires B7 molecules to serve double functions, namely, costimulation and induction of cytokine production by APCs.  相似文献   

18.
The effect of stimulating normal type 1 murine T cell clones with anti-CD3 antibody was examined in vitro. In the absence of accessory cells, anti-CD3 antibody immobilized on plastic plates stimulated inositol phosphate production, suboptimal proliferation, IL-2 and IL-3 production, and maximal IFN-gamma production. Addition of accessory cells augmented lymphokine production and proliferation when the effects of "high-dose suppression" were relieved by removing the T cells from the antibody-coated plates. Exposure of type 1 T cell clones to immobilized anti-CD3 antibody alone rapidly induced long-lasting proliferative unresponsiveness (anergy) to Ag stimulation that could be prevented by accessory cells. This anergic state was characterized by a lymphokine production defect, not a failure of the T cells to respond to exogenous IL-2 or to express surface Ti/CD3 complexes. In addition, anergy could not be induced in the presence of cyclosporine A. These results suggest that under certain conditions anti-CD3 antibodies may have potent immunosuppressive effects independent of Ti/CD3 modulation. Furthermore, our results support a two-signal model of type 1 T cell activation in which Ti/CD3 occupancy alone (signal 1) induces anergy, whereas Ti/CD3 occupancy in conjunction with a costimulatory signal (signal 2) induces a proliferative response.  相似文献   

19.
C A Akdis  K Blaser 《FASEB journal》1999,13(6):603-609
Specific immunotherapy (SIT) is widely used for treatment of allergic diseases and could potentially be applied in other immunological disorders. Induction of specific unresponsiveness (anergy) in peripheral T cells and recovery by cytokines from the tissue microenvironment represent two key steps in SIT with whole allergen or antigenic T cell peptides (PIT). The anergy is directed against the T cell epitopes of the respective antigen and characterized by suppressed proliferative and cytokine responses. It is initiated by autocrine action of IL-10, which is increasingly produced by the antigen-specific T cells. Later in therapy, B cells and monocytes also produce IL-10. The anergic T cells can be reactivated by different cytokines. Whereas IL-15 and IL-2 generate Th1 cytokine profile and an IgG4 antibody response, IL-4 reactivates a Th2 cytokine pattern and IgE antibodies. Increased IL-10 suppresses IgE and enhances IgG4 synthesis, resulting in a decreased antigen-specific IgE:IgG4 ratio, as observed normally in patients after SIT or PIT. The same state of anergy against the major bee venom allergen, phospholipase A2, can be observed in subjects naturally anergized after multiple bee stings. Together, these data demonstrate the pivotal role of autocrine IL-10 in induction of specific T cell anergy and the important participation of the cytokine microenvironment in SIT. Furthermore, knowledge of the mechanisms explaining reasons for success or failure of SIT may enable possible predictive measures of the treatment.  相似文献   

20.
Role of CD47 in the induction of human naive T cell anergy   总被引:6,自引:0,他引:6  
We recently reported that CD47 ligation inhibited IL-2 release by umbilical cord blood mononuclear cells activated in the presence of IL-12, but not IL-4, preventing the induction of IL-12Rbeta(2) expression and the acquisition of Th1, but not the Th2 phenotype. Here we show that in the absence of exogenous cytokine at priming, CD47 ligation of umbilical cord blood mononuclear cells promotes the development of hyporesponsive T cells. Naive cells were treated with CD47 mAb for 3 days, expanded in IL-2 for 9-12 days, and restimulated by CD3 and CD28 coengagement. Effector T cells generated under these conditions were considered to be anergic because they produced a reduced amount of IL-2 at the single-cell level and displayed an impaired capacity 1) to proliferate, 2) to secrete Th1/Th2 cytokines, and 3) to respond to IL-2, IL-4, or IL-12. Moreover, CD47 mAb strongly suppressed IL-2 production and IL-2Ralpha expression in primary cultures and IL-2 response of activated naive T cells. Induction of anergy by CD47 mAb was IL-10 independent, whereas inclusion of IL-2 and IL-4, but not IL-7, at priming fully restored T cell activation. Furthermore, CD28 costimulation prevented induction of anergy. Thus, CD47 may represent a potential target to induce anergy and prevent undesired Th0/Th1 responses such as graft vs host diseases, allograft rejection, or autoimmune diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号