首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On capturing a quantum of light, the bacteriorhodopsin of Halobacterium halobium undergoes a photocycle involving different intermediates. The exact scheme of the photocycle and especially the number of M intermediates are subjects of debate. For a quantitative analysis of many effects connected with the photocycle, e.g. the effect of the membrane potential on the kinetics of M decay (Groma et al., 1984. Biophys. J. 45:985-992), a knowledge of the exact photocycle is needed. In the present work sophisticated measurements were made on the decay kinetics of the M forms in cell envelope vesicles, purple membrane suspension and purple membrane fragments incorporated in polyacrylamide gel. The experimental data were analyzed by fitting one, two, and three discrete exponentials. Three different real components were found in the M decay of cell envelope vesicles in 4 M NaCl. All of them exhibited a temperature-dependence obeying the Arrhenius law. Two real components were found for the purple membrane in suspension and in gel in NaCl-free medium. The third phase appeared when the gel was soaked in 4 M NaCl. As an independent means of analysis, a continuous distribution of exponentials was also fitted to the M decay kinetics in cell envelope vesicles. This calculation also resulted in three processes with distinct rates or alternatively two processes with distributed rates.  相似文献   

2.
A variety of neutron, X-ray and electron diffraction experiments have established that the transmembrane regions of bacteriorhodopsin undergo significant light-induced changes in conformation during the course of the photocycle. A recent comprehensive electron crystallographic analysis of light-driven structural changes in wild-type bacteriorhodopsin and a number of mutants has established that a single, large protein conformational change occurs within 1 ms after illumination, roughly coincident with the time scale of formation of the M(2) intermediate in the photocycle of wild-type bacteriorhodopsin. Minor differences in structural changes that are observed in mutants that display long-lived M(2), N or O intermediates are best described as variations of one fundamental type of conformational change, rather than representing structural changes that are unique to the optical intermediate that is accumulated. These observations support a model for the photocycle of wild-type bacteriorhodopsin in which the structures of the initial state and the early intermediates (K, L and M(1)) are well approximated by one protein conformation in which the Schiff base has extracellular accessibility, while the structures of the later intermediates (M(2), N and O) are well approximated by the other protein conformation in which the Schiff base has cytoplasmic accessibility.  相似文献   

3.
Spectrally silent transitions in the bacteriorhodopsin photocycle.   总被引:2,自引:1,他引:1       下载免费PDF全文
The photocycle kinetics of bacteriorhodopsin were analyzed from 0 to 40 degrees C at 101 wavelengths (330-730 nm). The data can be satisfactorily approximated by eight exponents. The slowest component (half-time 20 ms at 20 degrees C) belongs to the 13-cis cycle. The residual seven exponentials that are sufficient to describe the all-trans photocycle indicate that at least seven intermediates of the all-trans cycle must exist, although only five spectrally distinct species (K, L, M, N, and O) have been identified. These seven exponentials and their spectra at different temperatures provide the basis for the discussion of various kinetic schemes of the relaxation. The simplest model of irreversible sequential transitions includes after the first K--> L step the quasiequilibria of L<-->M, M<-->N, and N<-->O intermediates. These quasiequilibria are controlled by rate-limiting dynamics of the protein and/or proton transfer steps outside the chromophore region. Thus there exists an apparent kinetic paradox (i.e., why is the number of exponents of relaxation (at least seven) higher than the number of distinct spectral intermediates (only five)), which can be explained by assuming that some of the transitions correspond to changes in the quasiequilibria between spectrally distinct intermediates (i.e., are spectrally silent).  相似文献   

4.
C Gergely  C Ganea    G Váró 《Biophysical journal》1994,67(2):855-861
The photocycle of the 13-cis retinal containing bacteriorhodopsin was studied by three different techniques. The optical multichannel analyzer monitored the spectral changes during the photocycle and gave information about the number and the spectrum of the intermediates. The absorption kinetic measurements provided the possibility of following the absorbance changes at several characteristic wavelengths. The electric signal provided information about the charge motions during the photocycle. The results reveal the existence of two intermediates in the 13-cis photocycle, one with a short lifetime having an average of 1.7 microseconds and an absorption maximum at 620 nm. The other, a long-living intermediate, has a lifetime of about 50 ms and an absorption maximum around 585 nm. The data analysis suggests that these intermediates are in two parallel branches of the photocycle, and branching from the intermediate with the shorter lifetime might be responsible for the light-adaptation process.  相似文献   

5.
A formal approach to the routine analysis of kinetic data in terms of linear compartmental systems is presented. The methods of analysis are general in that they include much of the theory in common use, such as direct solution of differential equations, integral equations, transfer functions, fitting of data to sums of exponentials, matrix solutions, etc. The key to the formalism presented lies in the fact that a basic operational unit—called “compartment”—has been defined, in terms of which physical and mathematical models as well as input and output functions can be expressed. Additional features for calculating linear combinations of functions and for setting linear dependence relations between parameters add to the versatility of this method. The actual computations for the values of model parameters to yield a least squares fit of the data are performed on a digital computer. A general computer program was developed that permits the routine fitting of data and the evolution of models.  相似文献   

6.
The bacteriorhodopsin photocycle contains more than five spectrally distinct intermediates, and the complexity of their interconversions has precluded a rigorous solution of the kinetics. A representation of the photocycle of mutated D96N bacteriorhodopsin near neutral pH was given earlier (Váró, G., and J. K. Lanyi. 1991. Biochemistry. 30:5008-5015) as BRhv-->K<==>L<==>M1-->M2--> BR. Here we have reduced a set of time-resolved difference spectra for this simpler system to three base spectra, each assumed to consist of an unknown mixture of the pure K, L, and M difference spectra represented by a 3 x 3 matrix of concentration values between 0 and 1. After generating all allowed sets of spectra for K, L, and M (i.e., M1 + M2) at a 1:50 resolution of the matrix elements, invalid solutions were eliminated progressively in a search based on what is expected, empirically and from the theory of polyene excited states, for rhodopsin spectra. Significantly, the average matrix values changed little after the first and simplest of the search criteria that disallowed negative absorptions and more than one maximum for the M intermediate. We conclude from the statistics that during the search the solutions strongly converged into a narrow region of the multidimensional space of the concentration matrix. The data at three temperatures between 5 and 25 degrees C yielded a single set of spectra for K, L, and M; their fits are consistent with the earlier derived photocycle model for the D96N protein.  相似文献   

7.
The photoselection-induced time-resolved linear dichroism of a bacteriorhodopsin suspension of purple membrane from 350 to 750 nm is measured by a new pseudo-null measurement technique. In combination with time-resolved absorption measurements, these linear dichroism measurements are used to determine the reorientation of the retinal chromophore of bacteriorhodopsin from 50 ns to 50 microseconds after photolysis. This time range covers the times when the K photointermediate decays to form L, as well as the early times during the formation of the M intermediate in the photocycle. An analysis of the photoselection-induced linear dichroism measured directly, along with the absorbance changes polarized parallel to the linearly polarized excitation, shows that the anisotropy is invariant over this time period, implying that the photolyzed chromophore rotates less than 8 degrees C with respect to unphotolyzed chromophores during this part of the photocycle.  相似文献   

8.
Hendler RW  Shrager RI  Meuse CW 《Biochemistry》2008,47(19):5406-5416
In 1995, evidence both for photocooperativity and for heterogeneity as possible explanations for the ability of actinic light to modify the kinetics and pathways of the bacteriorhodopsin (BR) photocycle was reviewed ( Shrager, R. I., Hendler, R. W., and Bose, S. (1995) Eur. J. Biochem. 229, 589-595 ). Because both concepts could be successfully modeled to experimental data and there was suggestive published evidence for both, it was concluded that both photocooperativity and heterogeneity may be involved in the adaptation of the BR photocycle to different levels of actinic light. Since that time, more information has become available and it seemed appropriate to revisit the original question. In addition to the traditional models based on all intermediates in strict linear sequences, we have considered both homogeneous and heterogeneous models with branches. It is concluded that an explanation based on heterogeneity is more likely to be the true basis for the variation of the properties of the photocycle caused by changes in actinic light intensity. On the basis of new information presented here, it seems that a heterogeneous branched model is more likely than one with separate linear sequences.  相似文献   

9.
The possible mechanisms of electrogenic processes accompanying proton transport in bacteriorhodopsin are discussed on the basis of recent structural data of the protein. Apparent inconsistencies between experimental data and their interpretation are considered. Special emphasis is placed on the protein conformational changes accompanying the reprotonation of chromophore and proton uptake stage in the bacteriorhodopsin photocycle.  相似文献   

10.
The effects of amino acid substitutions in helix F of bacteriorhodopsin on the photocycle of this light-driven proton pump were studied. The photocycles of Ser-183----Ala and Glu-194----Gln mutants were qualitatively similar to that of wild-type bacteriorhodopsin produced in Escherichia coli and bacteriorhodopsin from Halobacterium halobium. The substitution of a Phe for either Trp-182 or Trp-189 significantly reduced the fraction of photocycling bacteriorhodopsin. The amino acid substitutions Tyr-185----Phe and Ser-193----Ala substantially increased the lifetime of the photocycle without substantially increasing the lifetime of the M photocycle intermediate. Similar results were also obtained with the Pro-186----Gly substitution. In contrast, replacing Pro-186 with the larger residue Leu inhibited the formation of the M photocycle intermediate. These results are consistent with a structural model of the retinal-binding pocket suggested by low-temperature UV/visible and Fourier transform infrared difference spectroscopies that has Trp-182, Tyr-185, Pro-186, and Trp-189 forming part of the binding pocket.  相似文献   

11.
The photocycle of pharaonis halorhodopsin was investigated in the presence of 100 mM NaN(3) and 1 M Na(2)SO(4). Recent observations established that the replacement of the chloride ion with azide transforms the photocycle from a chloride-transporting one into a proton-transporting one. Kinetic analysis proves that the photocycle is very similar to that of bacteriorhodopsin. After K and L, intermediate M appears, which is missing from the chloride-transporting photocycle. In this intermediate the retinal Schiff base deprotonates. The rise of M in halorhodopsin is in the microsecond range, but occurs later than in bacteriorhodopsin, and its decay is more accentuated multiphasic. Intermediate N cannot be detected, but a large amount of O accumulates. The multiphasic character of the last step of the photocycle could be explained by the existence of a HR' state, as in the chloride photocycle. Upon replacement of chloride ion with azide, the fast electric signal changes its sign from positive to negative, and becomes similar to that detected in bacteriorhodopsin. The photocycle is enthalpy-driven, as is the chloride photocycle of halorhodopsin. These observations suggest that, while the basic charge translocation steps become identical to those in bacteriorhodopsin, the storage and utilization of energy during the photocycle remains unchanged by exchanging chloride with azide.  相似文献   

12.
C Z Wan  J Qian  C K Johnson 《Biochemistry》1991,30(2):394-400
By comparison of the time dependence of linear dichroism and transient absorption in light-adapted bacteriorhodopsin over the first 10 microseconds following excitation, conformational motion in the protein has been detected. Time-resolved linear dichroism and transient absorption scans are reported for several wavelengths that probe the K610 and L550 intermediates in the bacteriorhodopsin photocycle. The transient absorption scans are insensitive to conformational motion and yield the lifetimes of the K610 and L550 intermediates. In contrast, the time-resolved linear dichroism scans demonstrate orientational motion of the chromophore with a 1.7-microsecond rotational time. The wavelength dependence of the least-squares fitting parameters establishes that this motion is associated with L550. This motion is discussed in relation to a protein conformational change in the course of the bacteriorhodopsin photocycle. No evidence is observed for orientational motion on the time scale of the L550----M410 transition.  相似文献   

13.
The photon-driven proton translocator bacteriorhodopsin is considered to be the best understood membrane protein so far. It is nowadays regarded as a model system for photosynthesis, ion pumps and seven transmembrane receptors. The profound knowledge came from the applicability of a variety of modern biophysical techniques which have often been further developed with research on bacteriorhodopsin and have delivered major contributions also to other areas. Most prominent examples are electron crystallography, solid-state NMR spectroscopy and time-resolved vibrational spectroscopy. The recently introduced method of crystallising a membrane protein in the lipidic cubic phase led to high-resolution structures of ground state bacteriorhodopsin and some of the photocycle intermediates. This achievement in combination with spectroscopic results will strongly advance our understanding of the functional mechanism of bacteriorhodopsin on the atomic level. We present here the current knowledge on specific aspects of the structural and functional dynamics of the photoreaction of bacteriorhodopsin with a focus on techniques established in our institute.  相似文献   

14.
Dér A  Ormos P 《Biophysical chemistry》1995,56(1-2):159-163
Electric signals associated with the photocycle of bacteriorhodopsin carry valuable information about the proton transport process. Photocurrents measured by different experimental methods are interpreted in terms of intramolecular charge displacements. Permanent electrical asymmetry of the sample is considered to be a prerequisite for the detection of electric signals. The various photoelectric measuring techniques can be distinguished by the way of achievement of this asymmetry. A common feature of the available methods, however, is that the samples are cylindrically symmetric. Consequently, intramembraneous charge displacements can normally be monitored only along the axis of the membrane normal. We developed a novel method that allows also the detection of the in-plane components of the charge displacements. Samples containing oriented purple membrane fragments were used in the experiments, and the rotational symmetry was transiently broken via anisotropic excitation of the bR molecules by linearly polarized light. Kinetics of the normal and in-plane components were measured and interpreted as a result of spatial charge displacements associated with the proton transport process in bacteriorhodopsin.  相似文献   

15.
Theories for the facilitation of neurotransmitter release are discussed in a case study of the properties of linear and non-linear models for a phenomenon whose time course can be represented by a sum of decaying exponentials. Particular attention is paid to the effects of a "key factor" on the slopes and amplitudes of the exponentials that can be derived from semilog plots of the data. It is shown that the presence of such effects can give strong evidence for the inappropriateness of linear models. A non-linear model is demonstrated to be capable of describing the changes with extracellular Ca concentration of straight line segments that fit data in semilog plots of facilitation as a function of time. The conclusion is reached that even if data seems to be representable by several independently alterable exponentials one must be cautious in drawing inferences concerning the number, linearity, or independence of the underlying processes.  相似文献   

16.
Time-resolved difference spectra have been obtained for the photocycle of delipidated bacteriorhodopsin monomers (d-BR) in six different detergent micelle environments that were prepared by two new detergent-exchange techniques. A global kinetic analysis of the photocycle spectra for d-BR in each detergent environment was performed. Comparison of these results with those obtained for the photocycle of bacteriorhodopsin in purple membrane (PM) shows that there is one fewer kinetically distinguishable process for monomeric BR between the decay of the K intermediate and the rise of the M intermediate. Assuming a sequential pathway occurs in the photocycle, it appears that the equilibrium between the L and M intermediates is reached much more rapidly in the detergent micelles. This is attributed to a more direct interaction between Asp-85 and the proton on the nitrogen of the Schiff base of retinal for BR in the detergents. Equilibrium concentrations of late photocycle intermediates are also altered in detergents. The later steps of the photocycle, including the decay of the M intermediate, are slowed in detergents with rings in their hydrocarbon region. This is attributed to effects on conformational changes occurring during the decay of M and/or other later photocycle intermediates. The lifetime of dark adaptation of light-adapted d-BR in different detergent environments increases in environments where the lifetime of the M intermediate increases. These results suggest that the high percentage of either unsaturated or methyl-branched lipids in PM and the membranes of other retinal proteins may be important for their effective functioning.  相似文献   

17.
Light-induced reorientation in the purple membrane.   总被引:2,自引:2,他引:0       下载免费PDF全文
C Wan  J Qian    C K Johnson 《Biophysical journal》1993,65(2):927-938
Reorientation of bacteriorhodopsin in the native purple membrane was studied by time-resolved linear dichroism spectroscopy (TRLD) over the millisecond time regime. The time responses observed in TRLD are distinctly different from the isotropic transient absorption (TA) at wavelengths in the range 550-590 nm, where the bacteriorhodopsin ground state absorbs. In contrast, the TA and TRLD responses have nearly identical time dependence at 410 and 690 nm, where the intermediates M and O, respectively, principally contribute. These results demonstrate ground-state bacteriorhodopsin reorientation triggered by the photocycle. The TRLD and TA data are analyzed to test models for reorientational motion. Rotational diffusion of ground-state bacteriorhodopsin cannot account for the details of the data. Rather, the results are shown to be consistent with a reversible reorientation of "spectator" (nonexcited) members of the bacteriorhodopsin trimer in the purple membrane in response to the photocycling member of the trimer. This response may be associated with cooperativity in the trimer.  相似文献   

18.
Excitation of bacteriorhodopsin (BR) in its β absorption band drives a photocycle identical in the millisecond range, to that excited in the α band of BR. The relative contribution of the two transition dipoles distinguished in the β band to the initiation of the photocycle was established by photoselection experiments. Having this information the orientation of the chromophoric plane was specified by electric dichroism measurements.  相似文献   

19.
The goal of time-resolved crystallographic experiments is to capture dynamic "snapshots" of molecules at different stages of a reaction pathway. In recent work, we have developed approaches to determine determined light-induced conformational changes in the proton pump bacteriorhodopsin by electron crystallographic analysis of two-dimensional protein crystals. For this purpose, crystals of bacteriorhodopsin were deposited on an electron microscopic grid and were plunge-frozen in liquid ethane at a variety of times after illumination. Electron diffraction patterns were recorded either from unilluminated crystals or from crystals frozen as early as 1 ms after illumination and used to construct projection difference Fourier maps at 3.5-A resolution to define light-driven changes in protein conformation. As demonstrated here, the data are of a sufficiently high quality that structure factors obtained from a single electron diffraction pattern of a plunge-frozen bacteriorhodopsin crystal are adequate to obtain an interpretable difference Fourier map. These difference maps report on the nature and extent of light-induced conformational changes in the photocycle and have provided incisive tools for understanding the molecular mechanism of proton transport by bacteriorhodopsin.  相似文献   

20.
The role of Thr-46 and Thr-89 in the bacteriorhodopsin photocycle has been investigated by Fourier transform infrared difference spectroscopy and time-resolved visible absorption spectroscopy of site-directed mutants. Substitutions of Thr-46 and Thr-89 reveal alterations in the chromophore and protein structure during the photocycle, relative to wild-type bacteriorhodopsin. The mutants T89D and to a lesser extent T89A display red shifts in the visible lambda max of the light-adapted states compared with wild type. During the photocycle, T89A exhibits an increased decay rate of the K intermediate, while a K intermediate is not detected in the photocycle of T89D at room temperature. In the carboxyl stretch region of the Fourier transform infrared difference spectra of T89D, a new band appears as early as K formation which is attributed to the deprotonation of Asp-89. Along with this band, an intensity increase occurs in the band assigned to the protonation of Asp-212. In the mutant T46V, a perturbation in the environment of Asp-96 is detected in the L and M intermediates which corresponds to a drop in its pK alpha. These data indicate that Thr-89 is located close to the chromophore, exerts steric constraints on it during all-trans to 13-cis isomerization, and is likely to participate in a hydrogen-bonding network that extends to Asp-212. In addition, a transient interaction between Thr-46 and Asp-96 occurs early in the photocycle. In order to explain these results, a previously proposed model of proton transport is extended to include the existence of a transient network of hydrogen-bonded residues. This model can account for the protonation changes of key amino acid residues during the photocycle of bacteriorhodopsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号