首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities are essential for the supply of guanine nucleotides in Schistosoma mansoni schistosomules. In crude extracts of adult S. mansoni, these two activities co-elute in size exclusion, ion exchange, and chromatofocusing chromatography and exhibit similar stabilities to heat treatment, suggesting that they are associated in one enzyme protein hypoxanthine-guanine phosphoribosyltransferase. This enzyme has been purified by a combination of heat treatment at 85 degrees C and chromatofocusing chromatography with elution at an apparent pI of 5.27 +/- 0.15. Pore gradient electrophoresis of the native enzyme followed by subsequent activity staining demonstrate an enzyme molecular weight of 105,000. The activity staining pattern remains the same whether hypoxanthine or guanine is used as the substrate, further supporting the existence of a single protein, hypoxanthine-guanine phosphoribosyltransferase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified protein results in a single protein band with a subunit molecular weight estimate of 64,000, suggesting that the native enzyme is a dimer. Preliminary kinetic studies showed that the purified hypoxanthine-guanine phosphoribosyltransferase reacted with guanine at a rate twice as fast as it did with hypoxanthine, but it did not act on xanthine at all. A full-length mouse neuroblastoma hypoxanthine-guanine phosphoribosyltransferase cDNA clone pHPT5 and a plasmid pSV2-gpt containing the xanthine-guanine phosphoribosyltransferase gene for Escherichia coli were utilized as probes on Southern blots of S. mansoni DNA digests, and no significant hybridization was found under relatively relaxed conditions. Polyclonal antibodies made against human erythrocyte hypoxanthine-guanine phosphoribosyltransferase and E. coli xanthine-guanine phosphoribosyltransferase were tested in enzyme-linked immunosorbent assays of S. mansoni protein extracts, and no detectable cross-reacting protein was found. S. mansoni hypoxanthine-guanine phosphoribosyltransferase thus may bear rather limited homology to mammalian hypoxanthine-guanine phosphoribosyltransferase or bacterial xanthine-guanine phosphoribosyltransferase and could be an attractive target for antischistosomal chemotherapeutic drug design.  相似文献   

2.
Genetic mutations in the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT), are known to cause Lesch-Nyhan syndrome and Kelley-Seegmiller syndrome. In patients, purine metabolism is different from that of normal persons. We have previously developed a method for simultaneously determining the concentration of purine and pyrimidine nucleosides and nucleotides. This system was applied to determine the concentrations of nucleosides and nucleotides in HPRT-deficient cell lines. The amount of inosine 5'-monophosphate (IMP) was different in Lesch-Nyhan syndrome, Kelley-Seegmiller syndrome, and control cell lines. The difference in the amount of IMP confirmed the mutation of the enzyme.  相似文献   

3.
D T Chou  H Cuzzone  K R Hirsh 《Life sciences》1983,33(12):1149-1156
We have previously reported that caffeine significantly enhanced 5-HT uptake and reduced 5-HT release from crude synaptosomal fractions obtained from rat cerebral cortex and from midbrain raphe region. Blood platelets, as reported by many laboratories and also demonstrated in our own labs, have a very active mechanism for 5-HT uptake and storage. In this regard platelets bear a high degree of similarity to brain serotonin neurons. The present experiments were, therefore, carried out to investigate the effects of caffeine on 5-HT uptake and release from rat platelets in an attempt to assess the possibility of using platelets as a model for studying the CNS effects of caffeine. Platelet rich plasma was prepared from the trunk blood of decapitated rats. Effects of caffeine were investigated at 10(-7), 10(-6), 10(-5) and 10(-4)M, on both the high affinity 3H-5-HT uptake and the spontaneous 5-HT release from 3H-5-HT preloaded platelets. The results show that caffeine did not change 5-HT uptake into platelets. In brain synaptosomes the same concentration of caffeine, however, increased 5-HT uptake dose-dependently. The results also revealed that caffeine increased 5-HT release from rat platelets in a concentration-dependent manner. The concentrations 10(-6), 10(-5), and 10(-4)M increased release significantly compared to control. This finding is also in contrast to that observed in synaptosomes of brain serotonin neurons where caffeine decreased 5-HT release. It is concluded, therefore, that the rat blood platelet is not a suitable model for studying these CNS actions of caffeine. Furthermore, our observations imply that rat platelet serotonin uptake and release mechanisms are not identical to those mechanisms in brain serotonin neurons.  相似文献   

4.
We have analyzed the adenine phosphoribosyltransferase (APRT) enzyme from Chinese hamster ovary cells through the study of mutants that are able to grow in the presence of the toxic adenine analogue 8-azaadenine. The distribution of the amino acid alterations was analyzed in terms of the binding regions for the purine and phosphoribosylpyrophosphate substrates and a comparison was made with mutants known in human APRT and human, mouse and hamster hypoxanthine-guanine phosphoribosyltransferase. A number of mutants were found to cluster in several regions of the amino acid sequence. Residual enzyme activity with adenine was determined and this was correlated with substrate binding regions. A model of the secondary structure features is proposed.  相似文献   

5.
Genetic mutations in the purine salvage enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT), are known to cause Lesch–Nyhan syndrome and Kelley–Seegmiller syndrome. In patients, purine metabolism is different from that of normal persons. We have previously developed a method for simultaneously determining the concentration of purine and pyrimidine nucleosides and nucleotides. This system was applied to determine the concentrations of nucleosides and nucleotides in HPRT-deficient cell lines. The amount of inosine 5′-monophosphate (IMP) was different in Lesch–Nyhan syndrome, Kelley–Seegmiller syndrome, and control cell lines. The difference in the amount of IMP confirmed the mutation of the enzyme.  相似文献   

6.
Lesch-Nyhan syndrome is a pediatric metabolic-neurological syndrome caused by the X-linked deficiency of the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). The cause of the metabolic consequences of HGPRT deficiency has been clarified, but the connection between the enzyme deficiency and the neurological manifestations is still unknown. In search for this connection, in the present study, we characterized purine nucleotide metabolism in primary astroglia cultures from HGPRT-deficient transgenic mice. The HGPRT-deficient astroglia exhibited the basic abnormalities in purine metabolism reported before in neurons and various other HGPRT-deficient cells. The following abnormalities were found: absence of detectable uptake of guanine and of hypoxanthine into intact cell nucleotides; 27.8% increase in the availability of 5-phosphoribosyl-1-pyrophosphate; 9.4-fold acceleration of the rate of de novo nucleotide synthesis; manyfold increase in the excretion into the culture media of hypoxanthine (but normal excretion of xanthine); enhanced loss of label from prelabeled adenine nucleotides (loss of 71% in 24 h, in comparison with 52.7% in the normal cells), due to 4.2-fold greater excretion into the media of labeled hypoxanthine. In addition, the HGPRT-deficient astroglia were shown to contain lower cellular levels of ADP, ATP, and GTP, indicating that the accelerated de novo purine synthesis does not compensate adequately for the deficiency of salvage nucleotide synthesis, and higher level of UTP, probably due to enhanced de novo synthesis of pyrimidine nucleotides. Altered nucleotide content in the brain may have a role in the pathogenesis of the neurological deficit in Lesch-Nyhan syndrome.  相似文献   

7.
Leishmania possess distinct xanthine phosphoribosyltransferase and hypoxanthine-guanine phosphoribosyltransferase enzymes that mediate purine salvage, an obligatory nutritional function for these pathogenic parasites. The xanthine phosphoribosyltransferase preferentially uses xanthine as a substrate, while the hypoxanthine-guanine phosphoribosyltransferase phosphoribosylates only hypoxanthine and guanine. These related phosphoribosyltransferases were used as model system to investigate the molecular determinants regulating the 6-oxopurine specificity of these enzymes. Analysis of the purine binding domains showed two conserved acidic amino acids; glutamate residues in the xanthine phosphoribosyltransferase (E198 and E215) and aspartate residues in the hypoxanthine-guanine phosphoribosyltransferase (D168 and D185). Genetic and biochemical analysis established that the single E198D and E215D mutations increased the turnover rates of the xanthine phosphoribosyltransferase without altering purine nucleobase specificity. However, the E215Q and E198,215D mutations converted the Leishmania xanthine phosphoribosyltransferase into a broad-specificity enzyme capable of utilizing guanine, hypoxanthine, and xanthine as substrates. Similarly, the D168,185E double mutation transformed the Leishmania hypoxanthine-guanine phosphoribosyltransferase into a mutant enzyme capable phosphoribosylating only xanthine, albeit with a much lower catalytic efficiency. These studies established that these conserved acidic residues play an important role in governing the nucleobase selectivity of the Leishmania 6-oxopurine phosphoribosyltransferases.  相似文献   

8.
Giardia lamblia, a flagellated parasitic protozoan and the causative agent of giardiasis, lacks de novo purine biosynthesis and exists on salvage of adenine and guanine by adenine phosphoribosyltransferase and guanine phosphoribosyltransferase. Guanine phosphoribosyltransferase from G. lamblia crude extracts has been purified to apparent homogeneity by Sephacryl S-200 gel filtration followed by C-8-GMP-agarose and 2',3'-GMP-agarose affinity chromatography, resulting in an overall recovery of 77% and a purification of 83,000-fold. The molecular weight of the native enzyme as estimated by gel filtration and isokinetic sucrose gradients was found to be 58,000-63,000, with a subunit molecular weight of approximately 29,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mono P chromatofocusing chromatography gives rise to a major activity peak eluting from the column at a pH of 6.75 and two minor activity peaks at pH of 5.3 and 5.2. Hypoxanthine and xanthine can be recognized by the enzyme as substrates but at Km values 20 times higher than that observed with guanine. G. lamblia guanine phosphoribosyltransferase is immunologically distinct from human hypoxanthine-guanine phosphoribosyltransferase and Escherichia coli xanthine-guanine phosphoribosyltransferase, and G. lamblia DNA fragments are incapable of hybridizing with mouse neuroblastoma hypoxanthine-guanine phosphoribosyltransferase DNA or E. coli xanthine phosphoribosyltransferase DNA under relatively relaxed conditions. All evidence presented suggests that G. lamblia guanine phosphoribosyltransferase may be qualified as a potential target for antigiardiasis chemotherapy.  相似文献   

9.
10.
Experiments are described leading to partial compensation of a deficiency in the enzyme hypoxanthine-guanine phosphoribosyltransferase in mutant cells by supplying the cells with exogenous purified enzymes. DEAE-dextran is an effective helper agent, whereas poly (L-lysine), lysolecithin and amphotericin B seem to inhibit the entry of the enzymes of their activity. Enzyme preparation from Chinese hamster was found to have different effects in different mutant cell lines. In mutant Chinese hamster cells, the electrophoretic activity pattern remains unchanged for the Chinese hamster enzyme, but changes progressively to faster-moving activity peaks for the human enzyme after several hours. The metabolic effect of the incorporated enzyme is in the range between 3 and 4% of the normal cellular enzyme activity which corresponds to a 10--20 fold increase of hypoxanthine-guanine phosphoribosyltransferase activity in the mutant cells.  相似文献   

11.
Experiments are described leading to partial compensation of a deficiency in the enzyme hypoxanthine-guanine phosphoribosyltransferase in mutant cells by supplying the cells with exogenous purified enzymes. DEAE-dextran is an effective helper agent, whereas poly(L-lysine, lysolecithin and amphotericin B seem to inhibit the entry of the enzymes or their activity. Enzyme preparation from Chinese hamster was found to have different effects in different mutant cell lines. In mutant Chinese hamster cells, the electrophoretic activity pattern remains unchanged for the Chinese hamster enzyme, but changes progressively to faster-moving activity peaks for the human enzyme after several hours. The metabolic effect of the incorporated enzyme is in the range between 3 and 4% of the normal cellular enzyme activity which corresponds to a 10–20 fold increase of hypoxanthine-guanine phosphoribosyltransferase activity in the mutant cells.  相似文献   

12.
Eight children with minimal brain dysfunction were studied for their individual responses to two stimulant medications--methylphenidate hydrochloride and caffeine citrate. Four types of behavioural responses were observed in the double-blind crossover experiment: four children responded favourably to both psychostimulants, one responded to methylphenidate alone and two responded to the placebo. The behaviour of one child deteriorated while he was taking methylphenidate and caffeine. In general, methylphenidate was superior to caffeine in diminishing hyperactive and aggressive behaviour. It is apparent that such stimulant medication exerts its therapeutic effects in these two areas primarily and would therefore be useful as one aspect of a complete treatment program for children with this syndrome.  相似文献   

13.
Brain Purines in a Genetic Mouse Model of Lesch-Nyhan Disease   总被引:3,自引:1,他引:2  
Abstract: Mice carrying a mutation in the gene encoding the purine salvage enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) have recently been produced to provide an animal model for Lesch-Nyhan disease. The current-studies were conducted to characterize the consequences of the mutation on the expression of HPRT and to characterize potential changes in brain purine content in these mutants. Our results indicate that the mutant animals have no detectable HPRT-immunoreactive material on western blots and no detectable HPRT enzyme activity in brain tissue homogenates, confirming that they are completely HPRT deficient (HPRT-). Despite the absence of HPRT-mediated purine salvage, the animals have apparently normal brain purine content. However, de novo purine synthesis, as measured by [14C]formate incorporation into brain purines, is accelerated four- to fivefold in the mutant animals. This increase in the synthesis of purines may protect the HPRT- mice from potential depletion of brain purines despite complete impairment of HPRT-mediated purine salvage.  相似文献   

14.
Epidemiological studies suggest sex differences in attention deficit and hyperactivity disorder (ADHD) symptomatology. The potential benefits of caffeine have been reported in the management of ADHD, but its effects were not properly addressed with respect to sex differences. The present study examined the effects of caffeine (0.3 g/L) administered since childhood in the behavior and brain-derived neurotrophic factor (BDNF) and its related proteins in both sexes of a rat model of ADHD (spontaneously hypertensive rats—SHR). Hyperlocomotion, recognition, and spatial memory disturbances were observed in adolescent SHR rats from both sexes. However, females showed lack of habituation and worsened spatial memory. Although caffeine was effective against recognition memory impairment in both sexes, spatial memory was recovered only in female SHR rats. Besides, female SHR rats showed exacerbated hyperlocomotion after caffeine treatment. SHR rats from both sexes presented increases in the BDNF, truncated and phospho-TrkB receptors and also phospho-CREB levels in the hippocampus. Caffeine normalized BDNF in males and truncated TrkB receptor at both sexes. These findings provide insight into the potential of caffeine against fully cognitive impairment displayed by females in the ADHD model. Besides, our data revealed that caffeine intake since childhood attenuated behavioral alterations in the ADHD model associated with changes in BDNF and TrkB receptors in the hippocampus.  相似文献   

15.
Cells with altered hypoxanthine-guanine phosphoribosyl transferase (HPRT) (IMP:pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) have been selected. Compared to wild type, mutant enzyme has a reduced affinity for the substrate phosphoribosyl pyrophosphate and is more labile to heat inactivation. Mutant cells are resistant to 6-thioguanine at 33-39 degrees C and sensitive to hypoxanthine-aminopterin-thymidine at 37-39 degrees C, but not at 33 degrees C. We hypothesize that a single structural mutation of HPRT can explain these results.  相似文献   

16.
6-Thioguanine resistant strains of rat glioma cells were selected spontaneously and after mutagen treatment. Both mutant lines exhibited a severe deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase, increased intracellular concentrations of 5-phosphoribosyl-1-pyrophosphate and rate of the early steps of purine biosynthesis, and an inability to incorporate guanine, but not adenine, into soluble purine nucleotides.  相似文献   

17.
A method for the measurement of erythrocyte 5-phosphoribosyl 1-pyrophosphate (PP-ribose-P) using HPLC is described. Inosinic acid formed from the enzyme-catalyzed reaction of hypoxanthine and PP-ribose-P using partially purified hypoxanthine-guanine phosphoribosyltransferase is measured after chromatography on an ion-exchange column (Partisil 10 SAX). The average recovery of PP-ribose-P added to erythrocytes was 96.6%. Normal values found were 1.3 +/- 0.6 nmol PP-ribose-P/ml packed RBC (20 individuals). Replication experiments gave a coefficient of variation of 4.4%. Elevated levels in the range 4.4-7.9 nmol PP-ribose-P/ml packed RBC were found in four patients with gout and partial deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase.  相似文献   

18.
Abstract— The intracellular concentrations of a number of amino acids were measured in a normal clone of rat glioma cells, and in several independently derived clones selected for gross deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT). A significant, approx 2-fold increase in the concentration of free glycine was observed in both mutagenized and non-mutagenized HGPRT deficient clones. The increase in glycine was independent of the phase of cell growth. A similar increase did not occur in HGPRT deficient lymphoblasts.  相似文献   

19.
Abstract: A rat neuroma cell line (B103 4C), deficient of hypoxanthine-guanine phosphoribosyltransferase (HGPRT), was utilized as a model tissue in search for the biochemical basis of the Lesch-Nyhan syndrome (LNS). The HGPRT-deficient neurons exhibited the following properties: an almost complete absence of uptake of guanine and of hypoxanthine into intact cell nucleotides (0.92% and 0.69% of normal, respectively); a significant increase in the availability of 5'-phosphoribosyl-1-pyrophosphate; a three- to fourfold acceleration of the rate of de novo nucleotide synthesis; a normal excretion of xanthine, but 15-fold increase in the excretion of hypoxanthine into the culture media; a normal cellular purine nucleotide content, including the absence of 5-amino-4-imidazole carboxamide nucleotides (Z-nucleotides), but enhanced turnover of adenine nucleotides (loss of 86% of the radioactivity of the prelabeled pool in 24 h, in comparison to 73% in the normal line), and an elevated UTP content. The results suggest that, under physiological conditions, guanine salvage does not occur in the normal neurons, but that hypoxanthine salvage is of great importance in the homeostasis of the adenine nucleotide pool. The finding of the normal profile of purine nucleotides in the HGPRT-deficient neurons indicates that the lack of hypoxanthine salvage is adequately compensated by the enhanced de novo nucleotide synthesis. These results did not furnish evidence in support of the possibility that GTP or ATP depletion, or Z-nucleotide accumulation, occurs in HGPRT-deficient neurons and that these are etiological factors causing the neurological abnormalities in LNS. On the other hand, the results point to the possibility that elevated hypoxanthine concentration in the brain may have an etiological role in the pathogenesis of LNS.  相似文献   

20.
We have isolated numerous mutants containing mutations in the salvage pathways of purine synthesis. The mutations cause deficiencies in adenine phosphoribosyltransferase (adeF), in hypoxanthine-guanine phosphoribosyltransferase (guaF), in adenine deaminase (adeC), in inosine-guanosine phosphorylase, (guaP), and in GMP reductase (guaC). The physiological properties of mutants containing one or more of these mutations and corresponding enzyme measurements have been used to derive a metabolic chart of the purine salvage pathway of Bacillus subtilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号