首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourteen prodrugs of the antitumor agent 3-[(3-amino-4-methoxy)phenyl]-2-(3,4,5-trimethoxyphenyl)cyclopent-2-ene-1-one (1) were prepared to improve its water solubility and potency. These prodrugs include alpha-amino acid (1a-1h), aliphatic amino acid (1i-1l), phosphoramidate (1m), and phosphate (1n) derivatives. All of the prodrugs showed improved water solubility. A number of the amino acid prodrugs (1a, 1b, 1d-1f, 1h, 1j, and 1k) exhibited more potent antitumor activity compared to the parent compound (1). The phosphate prodrug 1n also offered a potent antitumor activity, but the phosphoramidate 1m did not show any antitumor activity in vivo. None of the prodrugs exhibited significant toxicities in mice. These results indicate that the design and preparation of the amino acid prodrugs (1a, 1b, 1d-1f, 1h, 1j, and 1k) and phosphate prodrug (1n) are beneficial for enhancing the antitumor activity of 1. The similar approaches may be used to improve water solubility and bioactivity of other poorly soluble aromatic amines.  相似文献   

2.
In order to discover a quercetin prodrug with improved bioavailability, we synthesized nine quercetin–amion acid conjugates and estimated their pharmacokinetic properties including water solubility, stability against chemical or enzymatic hydrolysis, and cell permeability. Among the synthesized quercetin prodrugs, quercetin–glutamic acid conjugate Qu-E (4g/5g) showed remarkable increases in water solubility, stability, and cell permeability compared with quercetin, which warrants further development as a quercetin prodrug.  相似文献   

3.
Previously, we reported a class of MDM2-MDM4 dimerization inhibitors that upregulate p53 and showed potent anticancer activity in animal models. However, water solubility hinders their further development. Herein we describe our effort to develop a prodrug approach that overcomes the solubility problem. The prodrug of BW-AQ-238, a potent anthraquinone analog, was made by esterification of the hydroxyl group with various natural amino acids. Cytotoxicity of these compounds toward Hela and EU-1 cells, their aqueous solubility, and the release kinetics of these prodrugs in buffer and in the presence of hydrolytic enzymes were studied. The results demonstrate that the amino acid prodrug approach significantly improved the water solubility while maintaining the potency of the parent drug.  相似文献   

4.
A novel type of water-soluble prodrugs of cyclosporine A (CsA) is described, featuring a modular system of an enzyme-cleavable group, a solubilizing moiety and a chemodegradable spacer attached to the hydroxyl function of (4R)-4-[(E)-2-butenyl]-4-,N-dimethyl-l-threonine (MeBmt)-1 of CsA. The chemical synthesis of these double prodrugs proceeds in high yield and purity and allows for a systematic study of the influence of the structural parameters upon physicochemical and pharmacological properties. The evaluation of the chemical and enzymatic stability results in differential values of the conversion rates (minutes to several hours) in support of an enzyme-triggered release of the parent drug as the rate-limiting step. In vitro studies show that the designed prodrug systems can be regarded as soft prodrugs in being devoid of cyclophiline A (CypA) binding and that complete conversion to the parent drug occurs in whole rat blood, setting the stage for therapeutic use.  相似文献   

5.
Transport across the intestinal barrier of compounds with low permeability may be facilitated by targeting the human oligopeptide transporter, hPepT1. A flexible synthetic pathway for attaching compounds to dipeptides through ester or amide bonds was developed. Furthermore, a synthetic approach to functionalize model drugs from one key intermediate was generated and applied to a glucose-6-phosphatase active model drug. The model drug was coupled to D-Glu-Ala through various linkers, and the G-6-Pase activity as well as the aqueous solubility and transport properties of these prodrugs, as compared to those of the parent drugs, were examined. None of the peptide-coupled compounds seemed to be transported by hPepT1, though one of the peptide-coupled compounds had affinity for hPepT1. Interestingly, in one case the parent drug was actively effluxed, while the corresponding peptide-coupled prodrug was not. The low aqueous solubility of the parent compounds was not increased after attachment to a dipeptide. This suggests that only compounds with a certain intrinsic aqueous solubility should be targeted to hPepT1 by attachment to a dipeptide. Important information about the design of peptide-coupled drugs targeted for hPepT1 is presented.  相似文献   

6.
Curcumin (CUR) is a natural yellow pigment from turmeric with extensive bioactivities. However its relatively poor solubility limited its absorption and bioavailability. In this study, a novel series of CUR-peptide conjugates were designed and synthesized as PepT1-mediated transport drugs and their solubility, cellular uptakes and anti-tumor activities were evaluated. Ten compounds showed better water solubility than CUR due to the dipeptide moiety. Compared with CUR, compound 5e exhibited the slightly better activity and 5d showed the similar activity with CUR. Besides, compounds 5d and 5e performed higher cellular uptakes in Caco-2 cell and dose-dependently inhibited by the addition of PepT1 typical substrate glycylsarcosine (Gly-Sar). Compound 5d and 5e have improved the absorption of CUR by PepT1-mediated without affected the activity. These new dipeptide conjugates of CUR may serve as promising lead compounds for future drug development.  相似文献   

7.
The synthesis of water soluble prodrugs analogs of echinocandin B.   总被引:1,自引:0,他引:1  
A facile synthesis of phosphonate and phosphate ester prodrugs on the phenolic hydroxy of two echinocandin semisynthetic derivatives is reported. The water solubility and stability profiles of the ECB compounds varied with the choice of alkyl group used. In some cases, the ester prodrugs with small aliphatic side chains retained antifungal activity while enhancing water solubility.  相似文献   

8.
Cancer stem cells are responsible for the failure of a large number of cancer treatments and the re-emergence of cancer in patients. Parthenolide is a potent anticancer sesquiterpene lactone that is also able to kill cancer stem cells. The main problem with this compound is its poor solubility in water. To solve this problem, medicinal chemists have tried to prepare amino-derivatives of parthenolide, however, most amino-derivatives have less potency than that of parthenolide. In this paper, we proposed a new approach to synthesize parthenolide derivatives with better solubility and higher potency. We prepared novel parthenolide derivatives through the aza-Michael addition of nitrogen-containing anticancer drug molecules (cytarabine and melphalan) to the α-methylene-γ-lactone group of parthenolide. Different types of catalysts were used to catalyze the aza-Michael addition. Among all the used catalysts, 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU) was found to have the highest catalytic activity. In addition, we examined the effects of parthenolide-anticancer drug hybrids on the growth and proliferation of three cancer cell lines (MCF-7, LNcaP, Hep G2) and CHO. The parthenolide prodrugs showed potent cytotoxic property with IC50 values ranging from 0.2 to 5.2 μM, higher than those of parthenolide and anticancer drugs (cytarabine and melphalan).  相似文献   

9.
Polyhydric alcohol derivatives of the anticancer agent lonidamine (LND) have been synthesized. The increased water solubility showed by prodrugs 4, 7, and 25 together with their logP values (2.19, 2.55, and 2.54, respectively) and chemical stability might be beneficial for prodrugs absorption after oral administration. Moreover, the new prodrugs undergo enzymatic hydrolysis in plasma and release LND demonstrating that they are promising candidates for in vivo investigations.  相似文献   

10.
Synthesis and evaluation of water-soluble paclitaxel prodrugs   总被引:5,自引:0,他引:5  
A series of water-soluble 2'-paclitaxel prodrugs were synthesized by attaching paclitaxel to polyethylene glycol (PEG) through amino acid spacers. The prodrugs showed highly improved water solubility, enhanced in vitro cytotoxicity and in vivo antitumor activity compared with the native drug, paclitaxel.  相似文献   

11.
The low water solubility of Propofol resulted in complicated formulation and adverse effects during its clinical application. To improve its water solubility and maintain its anesthetic effects, Propofol prodrugs with monodisperse oligoethylene glycols as solubility enhancer were designed and synthesized. Monodisperse oligoethylene glycols enable the concise manipulation of water solubility, biocompatibility and anesthetic effects. Through the physicochemical and biological assay, a few water soluble prodrugs of Propofol were identified as promising anesthetic to overcome the drawbacks associated with Propofol.  相似文献   

12.
N-Ointramolecular acyl migration in Ser- or Thr-containing peptides is a well-known side reaction in peptide chemistry. It results in the mutual conversion of ester and amide bonds. Our medicinal chemistry study focused on the fact that the O-acyl product can be readily converted to the original N-acyl form under neutral or slightly basic conditions in an aqueous buffer and the liberated ionized amino group enhances the water solubility of O-acyl products. Because of this, we have developed a novel class of "O-N intramolecular acyl migration"-type water-soluble prodrugs of HIV-1 protease inhibitors. These prodrugs released the parent drugs via a simple chemical mechanism with no side reaction. In this study, we applied this strategy to important cancer chemotherapeutic agents, paclitaxel and its derivatives, to develop water-soluble taxoid prodrugs, and found that these prodrugs, 2'-O-isoform of taxoids, showed promising results with higher water solubility and proper kinetics in their parent drug formation by a simple pH-dependent chemical mechanism with O-N intramolecular acyl migration. These results suggest that this strategy would be useful in toxicology and medical economics. After the successful application of O-N intramolecular acyl migration in medicinal chemistry, this concept was recently used in peptide chemistry for the synthesis of "difficult sequence-containing peptides." The strategy was based on hydrophilic O-acyl isopeptide synthesis followed by the O-N intramolecular acyl migration reaction, leading to the desired peptide. In a model study with small, difficult sequence-containing peptides, synthesized "O-acyl isopeptides" not only improved the solubility in various media and efficiently performed the high performance liquid chromatography purification, but also altered the nature of the difficult sequence during SPPS, resulting in the efficient synthesis of O-acyl isopeptides with no complications. The subsequent O-N intramolecular acyl migration of purified O-acyl isopeptides afforded the desired peptides as precipitates with high yield and purity. Further study of the synthesis of a larger difficult sequence-containing peptide, Alzheimer's disease-related peptide (A beta 1-42), surprisingly showed that only one insertion of the O-acyl group drastically improved the unfavorable nature of the difficult sequence in A beta 1-42, and achieved efficient synthesis of 26-O-acyl isoA beta 1-42 and subsequent complete conversion to A beta 1-42 via the O-N intramolecular acyl migration reaction of 26-O-acyl isoA beta 1-42. This suggests that our new method based on O-N intramolecular acyl migration is an important method for the synthesis of difficult sequence-containing bioactive peptides.  相似文献   

13.
Water soluble N-benzyltriazolium or N-benzylimidazolium salt type prodrugs of several highly lipophilic triazole or imidazole antifungals have been synthesized. They were designed to undergo an enzymatic activation followed by a self-cleavage to release a parent drug. The prodrugs such as 16 had enough chemical stability and water solubility for parenteral use and were rapidly and quantitatively converted to the active substance in human plasma.  相似文献   

14.
This study investigated the solubilization of cyclosporin A (CsA), a neutral undecapeptide, by cosolvency, micellization, and complexation. Cosolvents (ethanol, propylene glycol, polyethylene glycol, tetrahydrofurfuryl alcohol polyethyleneglycol ether, and glycerin), surfactants (polyoxyethylene sorbitan monooleate [(Tween 80)], polyoxyethylene sorbitan monolaurate [(Tween 20)], and Cremophor EL), and cyclodextrins (α-cyclodextrin [(αCD)] and hydroxypropyl-β-cyclodextrin[(HP\CD)] were used as solubilizing agents in this study. Surfactants had a noticeable effect in increasing CsA solubility. Twenty percent solutions of Tween 20, Tween 80, and Cremophor EL increased the solubility by 60 to 160 fold. Cyclodextrins can increase the CsA solubility, but αCD was more effective than HP\CD. Cosolvents on the other hand did not increase the solubility of CsA as much as expected from the LOGP (logrithm of wateroctanol partition coefficent) value of CsA.  相似文献   

15.
Synthesis and immunological activity of water-soluble thalidomide prodrugs   总被引:3,自引:0,他引:3  
A series of new water-soluble thalidomide prodrugs was prepared. All compounds were derivatized on the nitrogen of the glutarimide ring. Esters of natural amino acids and succinic acid derivatives have been introduced by reaction with the hydroxymethyl thalidomide 2. Nicotinic acid derivatives were prepared from halomethyl derivatives. Additionally, a methoxymethyl derivative and a carboxymethyl derivative were prepared directly from thalidomide. Most compounds showed a very large increase in water solubility compared to thalidomide itself (0.012mg/mL). The amorphous hydrochlorides of the N-methylalanine ester 8, valine ester 9, and glycylglycine ester 10, respectively, were the most soluble compounds showing solubility greater than 300mg/mL, which equals an increase greater than 15,000-fold. The lipophilicity of the prodrugs has been determined by their HPLC capacity factors k'. The stability of selected compounds was determined. The hydrolysis rates follow pseudo-first order kinetics. In order to assess the immunological activity, the prodrugs were tested using tumor necrosis factor-alpha and interleukin-2 inhibition assays. Selected compounds were additionally investigated on their abililty to inhibit the local Shwartzman reaction, an assay to determine the vascular permeability. The prodrugs retained high effectiveness in the inhibition of TNF-alpha release. Our results indicated that the more stable prodrugs exhibited higher activity in the immunological assays. Some compounds showed higher activity than thalidomide itself, suggesting a high affine binding to the pharmacophore. In conclusion, the prodrugs exhibited high water solubility and high activity and might therefore be used in therapeutic applications.  相似文献   

16.
Pyrrolo[2,1-c][1,4]benzodiazepine-beta-glucuronide prodrugs 15a-b, with a potential for selective therapy of solid tumors by PMT and ADEPT have been designed, synthesized and evaluated for selective cytotoxicity in the presence of the enzyme beta-glucuronidase. The prodrugs have been found to possess reduced cytotoxicity compared to the parent moieties, and are excellent substrates for the enzyme, exhibiting cytotoxicity selectively in the presence of the enzyme. Enhanced water solubility and improved stability are the other important outcomes upon modifying these molecules as their prodrugs.  相似文献   

17.
Synthesis of prodrugs of orally active COX-2 inhibitor 3 involving sulfamoyl (SO2NH2) and hydroxymethyl (CH2OH) groups, and their biological evaluation are described. Of these prodrugs, the N-propionyl sulfonamide sodium 3k was found to be much superior to the parent compound 3 and other marketed COX-2 inhibitors in carrageenan induced rat paw edema model of inflammation due to highly elevated drug levels in systemic circulation. This prodrug has a potential both for oral as well as parenteral administration due to impressive analgesic activity, antipyretic potency, and extraordinary water solubility.  相似文献   

18.
One- and two-dimensional NMR spectroscopy was used to demonstrate the formation of inclusion cyclodextrin complexes with several A-007 prodrugs. These complexes are comprised from the encapsulation of the two phenol moieties of the A-007 prodrugs within the cyclodextrin cavity. Considering the size of the two phenol moieties of the A-007 prodrugs compared to the sizes of alpha-, beta-, and gamma-cyclodextrin cavities, we observed complementary binding of the A-007 prodrug with only beta-cyclodextrin, which was also demonstrated spectroscopically. The beta-cyclodextrin inclusion complexes increased the prodrug solubility and modified the prodrug half-life in water. Therefore, beta-cyclodextrin inclusion complexes can be used as an essential form of A-007 prodrug delivery.  相似文献   

19.
A series of melphalan-O-carboxymethyl chitosan (Mel-OCM-chitosan) conjugates with different spacers were prepared and structurally characterized. All conjugates showed satisfactory water-solubility (160-217 times of Mel solubility). In vitro drug release behaviors by both chemical and enzymatic hydrolysis were investigated. The prodrugs released Mel rapidly within papain and lysosomal enzymes of about 40–75%, while released only about 4–5% in buffer and plasma, which suggested that the conjugates have good plasma stability and the hydrolysis in both papain and lysosomes occurs mostly via enzymolysis. It was found that the spacers have important effect on the drug content, water solubility, drug release properties and cytotoxicity of Mel-OCM-chitosan conjugates. Cytotoxicity studies by MTT assay demonstrated that these conjugates had 52–70% of cytotoxicity against RPMI8226 cells in vitro as compared with free Mel, indicating the conjugates did not lose anti-cancer activity of Mel. Overall these studies indicated Mel-OCM-chitosan conjugates as potential prodrugs for cancer treatment.  相似文献   

20.
Camptothecin, which represents a class of natural products with high anticancer activity, suffers low water solubility which hampers its clinic application. To address this issue, monodisperse polyethylene glycols were employed to modify this class of natural products, including Camptothecin, 10-Hydroxycamptothecin, and SN38. Through selective modification with a series of monodisperse polyethylene glycols, 31 Camptothecin derivatives, including 9 ethers and 22 carbonates, were prepared using a macrocyclic sulfate-based strategy with high efficacy. Monodisperse polyethylene glycols modification provided the Camptothecin derivatives with high purity and fine-tunable water solubility. Through the physicochemical and biological assays, a few novel prodrugs with good solubility, cytotoxicity, and valuable drug release profile were identified as promising anticancer drug candidates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号