首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purine regulon repressor, PurR, was identified as a component of the Escherichia coli regulatory system for pyrC, the gene that encodes dihydroorotase, an enzyme in de novo pyrimidine nucleotide synthesis. PurR binds to a pyrC control site that resembles a pur regulon operator and represses expression by twofold. Mutations that increase binding of PurR to the control site in vitro concomitantly increase in vivo regulation. There are completely independent mechanisms for regulation of pyrC by purine and pyrimidine nucleotides. Cross pathway regulation of pyrC by PurR may provide one mechanism to coordinate synthesis of purine and pyrimidine nucleotides.  相似文献   

2.
3.
The specificity of LexA protein binding was investigated by quantifying the repressibility of several mutant recA and lexA operator-promoter regions fused to the Escherichia coli galactokinase (galK) gene. The results of this analysis indicate that two sets of four nucleotides, one set at each end of the operator (terminal-nucleotide contacts), are most critical for repressor binding. In addition, our results suggest that the repressor-operator interaction is symmetric in nature, in that mutations at symmetrically equivalent positions in the recA operator have comparable effects on repressibility. The symmetry of this interaction justified reevaluation of the consensus sequence by half-site comparison, which yielded the half-site consensus (5')CTGTATAT. Although the first four positions of this sequence were most important, the last four were well conserved among binding sites and appeared to modulate repressor affinity. The role of the terminal-nucleotide contacts and the mechanism by which the internal sequences affected repressor binding are discussed.  相似文献   

4.
The Escherichia coli pur regulon repressor protein was overproduced in a phage T7 expression system. The overexpressed repressor constituted approximately 35% of the soluble cellular protein. Pur repressor was purified to near homogeneity by two chromatographic steps. Hypoxanthine or guanine was required for binding of purified repressor to purF operator DNA. Apparent dissociation constants of 3.4 nM were determined for binding of holorepressor to purF operator and of 1.7 and 7.1 microM were determined for aporepressor interaction with guanine and hypoxanthine, respectively. A requirement for hypoxanthine or guanine for conversion of aporepressor to holorepressor in vitro supports the earlier report (U. Houlberg and K.F. Jensen, J. Bacteriol. 153:837-845, 1983) that these purine bases are involved in regulation of pur gene expression in Salmonella typhimurium and confirms that hypoxanthine and guanine are corepressors.  相似文献   

5.
Infection of Escherichia coli in the presence of chloramphenicol with mutant filamentous phage that are defective in the initiation of minus-strand DNA synthesis induces the SOS response as monitored by cellular LexA levels. This observation demonstrates that single-stranded DNA serves as a primary signal for SOS induction in vivo.  相似文献   

6.
The glpR gene encoding the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli was cloned downstream from the strong pL promoter of bacteriophage lambda. This allowed overproduction of the repressor upon thermal induction of a cryptic lambda lysogen harboring the cI857 gene. The repressor was purified 40-fold to homogeneity from an induced strain. The purification scheme utilized polyethyleneimine and ammonium sulfate fractionation, followed by phosphocellulose and DEAE-Sephadex chromatography. Purification was monitored by measuring the binding of radiolabeled inducer (sn-glycerol 3-phosphate) to the repressor. The purified repressor migrated as a single band exhibiting a subunit molecular weight of 30,000 assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The molecular weight of the repressor under nondenaturing conditions was 100,000-130,000 suggesting the repressor is a tetramer under native conditions. Interaction of the repressor with sn-glycerol 3-phosphate was studied using flow dialysis. Scatchard analysis of the data indicated four binding sites/repressor tetramer and a dissociation constant of 31 microM. Interaction of the repressor with DNA was studied using band-shift electrophoresis. The repressor specifically bound DNA fragments containing the control regions for the glpD, glpK, and glpT-A genes. Binding of DNA by the repressor was diminished in the presence of sn-glycerol 3-phosphate.  相似文献   

7.
A rapid large-scale procedure for the purification of the LexA repressor of Escherichia coli is described. This procedure allows one to get more than 100 mg of purified protein from 100 g of bacterial paste with a purity of at least 97%. This method is comparable to earlier, far more complicated purification procedures giving clearly smaller yields. It is shown that the LexA protein may be identified spectroscopically by a large A235/A280 ratio and very pronounced ripples in the absorption spectrum arising from a high amount of phenylalanine residues with respect to that of the other aromatic amino acids. Polyacrylamide gel electrophoresis has been used to study the specific interaction of LexA with a recA operator fragment. The quaternary structure of LexA has been studied by equilibrium ultracentrifugation and sedimentation velocity measurements. The sedimentation coefficient increases with increasing LexA concentration, indicating that LexA is involved in self-association. This finding has been confirmed by equilibrium ultracentrifugation. The results are best described by a monomer-dimer and a subsequent dimer-tetramer equilibrium, with an association constant of 2.1 X 10(4) M-1 for the dimer and 7.7 X 10(4) M-1 for the tetramer formation. These relatively small association constants determined under near-physiological pH and salt conditions suggest that in vivo LexA should be essentially in the monomeric state. The degree to which LexA decreases the electrophoretic mobility of a 175 base pair fragment harboring the recA operator suggests that the recA operator interacts nevertheless with a LexA dimer. However, our results may be also explained by the binding of a LexA monomer with a simultaneous bending of the DNA fragment.  相似文献   

8.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

9.
The magnitudes of several pools of radioactively labeled precursors for RNA and protein synthesis were determined as a function of cell age during the division cycle of Escherichia coli 15 THU. Uracil, histidine, and methionine pools increased from low initial values for cells at birth to maxima during midcycle and then subsided again. These pools were small or nonexistent at the beginning and the end of the cycle, and their average values during the cycle were less than 4% of the total cellular radioactivity. The results are consistent with a linear pattern of growth for cells during the division cycle and provide strong evidence against exponential or bilinear growth of E. coli cells.  相似文献   

10.
Alkaline lysis of Escherichia coli is usually the method of choice for plasmid preparation, but ‘‘ghost bands” of denatured supercoiled DNA can result if the pH is too high or the period of lysis is too long. By replacing the usual sodium hydroxide lysis solution with an arginine buffer prepared in the range of pH 11.4 to 12.0, we were able to stabilize the pH during lysis and obtain plasmid that is suitably pure for restriction digestion and DNA sequencing.  相似文献   

11.
2-Aminopurine treatment of Escherichia coli induces a reversible phenotype of DNA mismatch repair deficiency. This transient phenotype results in a 300-fold increase in the frequency of interspecies conjugational recombination with a Salmonella enterica serovar Typhimurium Hfr donor. This method can be used for the generation of biodiversity by allowing recombination between diverged genes and genomes.  相似文献   

12.
The role of Tyr264 in nucleotide binding and hydrolysis catalyzed by the RecA protein of Escherichia coli was investigated by constructing Gly, Ser, and Phe substitution mutations using oligonucleotide-directed mutagenesis. The corresponding mutant recA genes neither restored resistance to killing by ultraviolet irradiation nor increased homologous recombination in a recA strain. The purified RecA(Gly264) protein was unable to bind nucleotide, hydrolyze ATP, or form stable ternary complexes with adenosine 5'-O-thiotriphosphate and DNA although the mutant protein bound DNA normally in the absence of nucleotide. The RecA (Phe264) and RecA(Ser264) proteins hydrolyzed ATP poorly and the rates were reduced approximately 8- and 18-fold, respectively. Although capable of low levels of ATP hydrolysis, neither the RecA(Phe264) nor the RecA(Ser264) protein promoted DNA pairing or strand exchange reactions in vitro. Furthermore, these mutant RecA proteins were impaired in their ability to form salt-resistant ternary complexes with adenosine 5'-O-thiotriphosphate) and DNA as judged by filter binding. Nevertheless, nucleoprotein complexes formed with either RecA(Phe264) or RecA(Ser264) protein directed efficient cleavage of LexA repressor in vitro. These results demonstrate that Tyr264 is required for efficient ATP hydrolysis and for homologous pairing of DNA but does not participate in activating RecA protein for LexA repressor autodigestion.  相似文献   

13.
The allantoin regulon of Escherichia coli, formed by three operons expressed from promoters allA(P), gcl(P) and allD(P), is involved in the anaerobic utilization of allantoin as nitrogen source. The expression of these operons is under the control of the repressor AllR. The hyperinduction of one of these promoters (allD(P)) by allantoin in an AllR defective mutant suggested the action of another regulator, presumably of activator type. In this work we have identified ybbS (proposed gene name allS), divergently transcribed from allA, as the gene encoding this activator. Analysis of the expression of the three structural operons in DeltaallS mutant showed that the expression from allD(P) was abolished, suggesting that AllS is essential for the expression of the corresponding operon. In a wild-type strain expression of allS takes place mainly anaerobically and is hyperinduced when the nitrogen source limits growth. However, expression of allS is independent of regulators of the Ntr response, NtrC or Nac. Band shift experiments showed that AllR binds to DNA containing the allS-allA intergenic region and the gcl(P) promoter and its binding is abolished by glyoxylate. Both DNA fragments contain a highly conserved inverted repeat, which after site-directed mutagenesis, has been proven to be the AllR-binding site. This site displays similarity with the IclR family recognized consensus. Interaction of AllR with the single operator present in the allS-allA intergenic region prevented binding of RNA polymerase to either of the two divergent promoters. The regulator AllS interacts only with allD(P) even in the absence of allantoin. Analysis of this promoter allowed us to identify an inverted repeat as a motif for AllS binding. We propose a model for the coordinate control of the allantoin regulon by AllR and AllS.  相似文献   

14.
Structural changes on LexA repressor promoted by acidic pH have been investigated. Intense protein aggregation occurred around pH 4.0 but was not detected at pH values lower than pH 3.5. The center of spectral mass of the Trp increased 400 cm(-1) at pH 2.5 relatively to pH 7.2, an indication that LexA has undergone structural reorganization but not denaturation. The Trp fluorescence polarization of LexA at pH 2.5 indicated that its hydrodynamic volume was larger than its dimer at pH 7.2. 4,4'-Dianilino-1,1'-binaphthyl-5,5'- disulfonic acid (bis-ANS) experiments suggested that the residues in the hydrophobic clefts already present at the LexA structure at neutral pH had higher affinity to it at pH 2.5. A 100 kDa band corresponding to a tetramer was obtained when LexA was subject to pore-limiting native polyacrylamide gel electrophoresis at this pH. The existence of this tetrameric state was also confirmed by small angle X-ray scattering (SAXS) analysis at pH 2.5. 1D 1H NMR experiments suggested that it was composed of a mixture of folded and unfolded regions. Although 14,000-fold less stable than the dimeric LexA, it showed a tetramer-monomer dissociation at pH 2.5 from the hydrostatic pressure and urea curves. Albeit with half of the affinity obtained at pH 7.2 (Kaff of 170 nM), tetrameric LexA remained capable of binding recA operator sequence at pH 2.5. Moreover, different from the absence of binding to the negative control polyGC at neutral pH, LexA bound to this sequence with a Kaff value of 1415 nM at pH 2.5. A binding stoichiometry experiment at both pH 7.2 and pH 2.5 showed a [monomeric LexA]/[recA operator] ratio of 2:1. These results are discussed in relation to the activation of the Escherichia coli SOS regulon in response to environmental conditions resulting in acidic intracellular pH. Furthermore, oligomerization of LexA is proposed to be a possible regulation mechanism of this regulon.  相似文献   

15.
16.
Exposure of Escherichia coli 2-oxo-4-hydroxyglutarate aldolase (4-hydroxy-2-oxoglutarate glyoxylate-lyase, EC 4.1.3.16) (molecular weight = 63 000) to phosphoric acid at pH 1.6 for 10 min at 4 degrees C causes 95% or greater inactivation. No significant effect on the rate or extent of inactivation is caused by varied aldolase concentrations or the presence of exogenous proteins. Chloride ion (50-100 mM) or 10 mM 2-oxo-4-hydroxyglutarate markedly decreases both the rate and extent of inactivation; good protection is also afforded by 10 mM pyruvate, glyoxylate, glyoxal, 2-oxoglutarate or 2-oxobutyrate. Whereas native aldolase has two free and three buried sulfhydryl groups, all five are exposed in the acid-inactivated enzyme and the molecular weight of this species at pH 1.6 is 126 000. Ultraviolet absorbance difference spectra, circular dichroism spectra and ultracentrifugation studies establish that the inactivation process is characterized by an alteration of secondary and tertiary structure as well as an aggregation to a dimer of the native molecule. Reactivation of enzyme activity to 60-80% of the original level is seen within 20 min at pH 6 to 8; examination of inactivation/reactivation as a function of pH indicates that these two processes occur via kinetically distinct pathways. Native and reactivated enzymes are identical in molecular weight, sulfhydryl titer, Km and alpha-helix content.  相似文献   

17.
18.
19.
20.
The ability of short-chain sugars to cause oxidative stress has been examined using glycolaldehyde as the simplest sugar. Short-chain sugars autoxidize in air, producing superoxide and alpha,beta-dicarbonyls. In Escherichia coli the soxRS regulon mediates an oxidative stress response, which protects the cell against both superoxide-generating agents and nitric oxide. In superoxide dismutase-deficient E. coli mutants, glycolaldehyde induces fumarase C and nitroreductase A, which are regulated as members of the soxRS regulon. A mutational defect in soxRS eliminates that induction. This establishes that glycolaldehyde can cause induction of this defensive regulon. This effect of glycolaldehyde was oxygen-dependent, was not shown by glyoxal, and was not seen in the superoxide dismutase-replete parental strain, and it was abolished by a cell-permeable SOD mimetic. All of these suggest that superoxide radicals produced by the oxidation of glycolaldehyde played a key role in the induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号