首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, impact of kinetin (KN; 10 and 100 μM) supplementation on growth, ammonium (NH(4)(+)) assimilation and antioxidant system in pea under hexavalent chromium toxicity (Cr VI; 50, 100 and 250 μM) was investigated. Chromium decreased growth, protein, and nitrogen, and activity of glutamine synthetase (GS) and glutamate synthase (GOGAT) while it increased NH(4)(+) content and activity of glutamate dehydrogenase (GDH). Kinetin at 100 μM decreased growth and NH(4)(+) assimilation, and together with Cr, it increased Cr toxicity. Chromium and 100 μM KN increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities while decreasing activities of catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR). Ascorbate and glutathione levels were decreased by Cr and 100 μM KN. In contrast, supplementation of 10 μM KN under Cr (VI) toxicity, protected NH(4)(+) assimilation and promoted growth of pea by increasing levels of some of the antioxidants i.e., CAT, GR, DHAR, ascorbate and glutathione. Results showed that 10 μM KN increases Cr tolerance while 100 μM KN exhibited opposite responses. These results could contribute to an understanding of the mechanisms of KN-mediated dual influence on metal tolerance in crop plants.  相似文献   

2.
The effect of 0.5–1.5 mM salicylic acid (SA) on modulating reactive oxygen species metabolism and ascorbate–glutathione cycle in NaCl-stressed Nitraria tangutorum seedlings was investigated. The individual plant fresh weight (PFW) and plant dry weight (PDW) significantly increased under 100 mM NaCl while remained unchanged or decreased under 200–400 mM NaCl compared to the control. Superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2), thiobarbituric acid reactive substances (TBARS), reduced ascorbate (AsA), dehydroascorbate (DHA), reduced glutathione (GSH) and oxidized glutathione (GSSG) increased whereas the ratios of AsA/DHA and GSH/GSSG decreased under varied NaCl treatments. Ascorbate peroxidase (APX) and glutathione reductase (GR) activities were enhanced while dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) activities remained unvaried under 100–400 mM NaCl stresses. In addition, exogenous SA further increased PFW, PDW and root/shoot ratio. SA effectively diminished O 2 ·? accumulation. H2O2 and TBARS decreased under 0.5 and 1.0 mM SA treatments compared to those without SA. 0.5 mM of SA increased while 1.0 and 1.5 mM SA decreased APX activities. DHAR activities were elevated by 0.5 and 1.0 mM SA but not by 1.5 mM SA. MDHAR and GR activities kept constant or significantly increased at varying SA concentrations. Under SA treatments, AsA and GSH contents further increased, DHA and GSSG levels remained unaltered, while the decreases in AsA/DHA and GSH/GSSG ratios were inhibited. The above results demonstrated that the enhanced tolerance of N. tangutorum seedlings conferred by SA could be attributed mainly to the elevated GR and DHAR activities as well as the increased AsA/DHA and GSH/GSSG ratios.  相似文献   

3.
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.  相似文献   

4.
This study was undertaken to investigate the possible involvement of the antioxidant defense and glyoxalase systems in protecting rice seedlings from heat-induced damage in the presence of spermidine (Spd). Hydroponically grown 14-day-old seedlings were subjected to foliar spray with Spd (1 mM, 24 h) prior to heat stress (42 °C, 48 h) followed by subsequent recovery (27 °C, 48 h). Lipoxygenase activity, malondialdehyde (MDA), hydrogen peroxide (H2O2) and proline (Pro) content increased significantly whereas fresh weight (FW) and chlorophyll (Chl) content decreased during heat stress and after recovery, indicating unrecoverable damage to rice seedlings. Heat-induced damage was also evident in decreased levels of ascorbate (AsA), glutathione (GSH), and AsA and GSH redox ratios. Superoxide dismutase (SOD) and catalase (CAT) activities increased during heat stress but declined after recovery. Activities of glutathione peroxidase (GPX), ascorbate peroxidase (APX), monodehydroascorbate reductase, dehydroascorbate reductase (DHAR) and glutathione reductase (GR) decreased during heat stress but an opposite trend for most of these enzymes was observed after recovery. Heat stress also resulted in significant increases in the activities of glyoxalase enzymes (Gly I and Gly II). In contrast, exogenous Spd protected rice seedlings from heat-induced damage as marked by lower levels of MDA, H2O2, and Pro content coupled with increased levels of AsA, GSH, FW, Chl, and AsA and GSH redox status. After recovery, Spd-pretreated heat-exposed seedlings displayed higher activities of SOD, CAT, GPX, GST APX, DHAR and GR as well as of Gly I and Gly II. In addition, polyamine analysis revealed that exogenously applied Spd significantly elevated the levels of free and soluble conjugated Spd. Therefore, we conclude from our results that heat exposure provoked an oxidative burden while enhancement of the antioxidative and glyoxalase systems by Spd rendered rice seedlings more tolerant to heat stress. Further, co-induction of the antioxidative and glyoxalase systems was closely associated with Spd mediated enhanced level of GSH.  相似文献   

5.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

6.
Brassica juncea (Indian mustard) L. plants were exposed to different concentrations (0.0, 0.1, 0.3 and 0.5 mM) of Chromium (Cr) and harvested after 30 and 60 days of sowing for the analysis of growth parameters, metal uptake and oxidative stress markers. Significant accumulation of Cr (VI) by B. juncea L. plants resulted in the reduced growth and modulations in the pool of various biochemical stress markers. The toxic effects of Cr (VI) on growth and other stress markers (protein content, lipid peroxidation and antioxidative enzymes viz.SOD, CAT, POD, APOX, GR, DHAR and MDHAR) in B. juncea L. were observed to be concentration and time dependent. Effect of Cr (VI) on biochemical parameters was differential and their maximum activities of SOD, POD, APX, GR, DHAR and lipid peroxidation were recorded at 0.5 mM concentration in 30 days old plants. Whereas, trend in the activities of most of the stress markers was reversed in 60 days old plants. The results obtained from the study suggested that Cr (VI) stress inhibited growth of B. juncea L. plants is directly interrelated with its accumulation and resulted in the modulation in activities of various stress markers.  相似文献   

7.
Exogenous salicylic acid (SA) can be used for chemical hardening to alleviate oxidative stress in plants exposed to salinity. The treatment of 5-week-old Arabidopsis thaliana plants with increasing doses of SA alters the ascorbate (ASC) and glutathione (GSH) pools, and modulates their redox status and the activity of several antioxidant enzymes, such as ascorbate peroxidase (APX) and glutathione reductase (GR). To investigate the role of GR in the maintenance of cytoplasmic redox homeostasis after hardening by SA, wild type (WT) and gr1 mutant plants, expressing the cytoplasmic redox-sensitive green fluorescent protein (c-roGFP1), were pre-treated with 10?7 and 10?5 M SA for 2 weeks and subsequently exposed to 100 mM NaCl. The redox status of the salt-stressed WT plants became more oxidized, which was prevented by pretreatment with 10?5 M SA. The gr1 mutants showed more positive redox potential than WT plants, which could be reversed by treatment with 10?5 M SA. In mutants, the increased GSH levels may have compensated for the deleterious effect of GR deficiency and stabilized the redox potential in plants exposed to salinity. The ASC regeneration in WT plants shifted from the GSH-dependent dehydroascorbate reductase (DHAR) reaction to the NAD(P)H-dependent monodehydroascorbate reductase (MDHAR) activity during chemical hardening, which contributed to the preservation of the GSH pool in plants under salt stress. Our results suggest that the maintenance of GSH levels and redox homeostasis by SA-mediated hardening play a major role in priming and defending against salt stress.  相似文献   

8.
Growth, lipid peroxidation, H2O2 produciton and the response of the antioxidant enzymes and metabolites of the ascorbate glutathione pathway to oxidative stress caused by two concentrations (50 and 100 µM) of Cr(III) and Cr(VI) was studied in 15 day old seedlings of sorghum (Sorghum bicolor (L.) Moench cv CO 27) after 10 days of treatment. Cr accumulation in sorghum plants was concentration and organ dependant. There was no significant growth retardation of plants under 50 µM Cr(III) stress. 100 µM Cr(VI) was most toxic of all the treatments in terms of root and leaf growth and oxidative stress. 50 µM Cr(VI) treated roots exhibited high significant increase in superoxide dismutase (SOD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) (p < 0.01) and significant increases in catalse (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) (p < 0.05). A high increase in ascorbic acid (AA) level was seen in roots of 50 µM Cr(VI) treated plants in comparison with control. Levels of reduced glutathione (GSH) showed a varied and complex response in all the treatments in both plant parts. GSH/GSSG ratio was not affected by Cr(III) treatment in leaves, in contrast, roots exhibited significant reduction in the ratio. Results indicate that GSH depletion increased sensitivity to oxidative stress (Cr(VI) roots and leaves and Cr(III) 100 µM roots) and AA in tandem with APX compensated for GSH depletion by acting directly on H2O2 and the mechanism of defensive response in roots as well as leaves varied in its degree and effectiveness due to the concentration dependant differences observed in translocation of the element itself, reactive oxygen species (ROS) generation and enzyme inhibition based on the oxidation state supplied to the plants.  相似文献   

9.
The effect of chromium (Cr) on growth as well as root plasma membrane redox reactions and superoxide radical production was studied in pea (Pisum sativum L. cv. Azad) plants exposed for 7 days to 20 and 200 μM Cr (VI), respectively, supplied as potassium dichromate. The growth of pea plants declined significantly at 200 μM Cr, as indicated by reduced leaf area and biomass. Relative to the control plants (no Cr exposure), the Cr content of roots increased significantly, both at 20 and 200 μM Cr. Following exposure to 200 μM Cr, there was a significant increase in root lipid peroxidation and hydrogen peroxide (H2O2) content, while both the Fv/Fm ratio and chlorophyll content were reduced. Exposure to Cr increased NADPH-dependent superoxide production in pea root plasma membrane vesicles, with the effect being more significant at 200 μM Cr than at 20 μM Cr. Treatment with Cr rapidly increased the activities of NADPH oxidase: relative to the controls, plants exposed to 20 μM Cr showed approximately a 67% increase in activity while there was a threefold increase in those plants exposed to 200 μM Cr. NADH-ferricyanide oxido-reductase activity was found to be inhibited by 16 and 51% at 20 and 200 μM Cr, respectively. The results of this study suggest that exposure to excess Cr damages pea root plasma membrane structure and function, resulting in decreased photosynthesis and poor plant growth.  相似文献   

10.

Ascorbate (AsA) and glutathione (GSH) play an important role in improving the tolerance of plants to water stress. The objective of this study was to investigate the effect of early abscisic acid (ABA) accumulation on AsA and GSH metabolism in soybean plants after 24 h of exposure to progressive water stress. The results showed that AsA, total AsA, GSH and total GSH content, and ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), GSH reductase (GR), GSH peroxidase (GPX), l-galactono-1,4-lactone dehydrogenase (GLDH), and γ-glutamylcysteine synthetase (γ-GCS) activities were increased by progressive water stress. The above increases, except for total GSH content and the activities of GLDH and γ-GCS, were blocked by pretreatment with tungstate, an ABA biosynthesis inhibitor, which significantly suppressed the early increase in ABA and reactive oxygen species (ROS) in stressed plants. Application of ABA reversed the effects of tungstate. Pretreatments with several ROS scavengers, such as Tiron and dimethylthiourea (DMTU), and an inhibitor of NADPH oxidase, diphenyleneiodonium (DPI), significantly arrested the early accumulation of ROS but not ABA in stressed plants. Furthermore, the above-mentioned pretreatments remarkably prevented any increase in APX, MDHAR, DHAR, GR, and GPX activities, as well as AsA, total AsA and GSH levels in stressed plants. Our results indicated that early ABA accumulation caused by progressive water stress triggers an early rise in ROS levels, which, in turn, leads to regulation of AsA and GSH metabolism.

  相似文献   

11.
To elucidate the effect of selenium (Se) on the ascorbate?Cglutathione (ASC?CGSH) cycle under drought stress, the activities of antioxidant enzymes and the levels of molecules involved in ASC?CGSH metabolism were studied in Trifolium repens seedlings subjected to polyethylene glycol (PEG)-induced water deficit alone or combined with 5???M Na2SeO4. Compared to the control, H2O2, thiobarbituric acid reactive substances (TBARS), ascorbate (ASC), dehydroascorbate (DHA), and glutathione disulfide (GSSG) contents increased, whereas a constant content of glutathione (GSH) and decreases in ASC/DHA and GSH/GSSG ratios were observed in the presence of PEG. The activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione reductase (GR) were upregulated, except for monodehydroascorbate reductase (MDHAR) activity during PEG-induced water deficit. Se application decreased the contents of H2O2, TBARS, DHA, and GSSG, increased the levels of GSH and ASC, and inhibited the decreases of ASC/DHA and GSH/GSSG ratios. Although it did not affect APX activity significantly, Se addition improved the activities of MDHAR, DHAR, and GR. Furthermore, GR activity showed the highest increase followed by that of DHAR and MDHAR in decreasing order. These data indicated that fluctuations in ASC?CGSH metabolism resulting from Se may have a positive effect on drought stress mitigation, and the regulation in the ASC?CGSH cycle can be attributed mainly to GR and DHAR in PEG?+?Se-treated T. repens seedlings.  相似文献   

12.
The present work describes, for the first time, the changes that take place in the leaf apoplastic antioxidant defenses in response to NaCl stress in two pea (Pisum sativum) cultivars (cv Lincoln and cv Puget) showing different degrees of sensitivity to high NaCl concentrations. The results showed that only superoxide dismutase, and probably dehydroascorbate reductase (DHAR), were present in the leaf apoplastic space, whereas ascorbate (ASC) peroxidase, monodehydroascorbate reductase (MDHAR), and glutathione (GSH) reductase (GR) seemed to be absent. Both ASC and GSH were detected in the leaf apoplastic space and although their absolute levels did not change in response to salt stress, the ASC/dehydroascorbate and GSH to GSH oxidized form ratios decreased progressively with the severity of the stress. Apoplastic superoxide dismutase activity was induced in NaCl-treated pea cv Puget but decreased in NaCl-treated pea cv Lincoln. An increase in DHAR and GR and a decrease in ASC peroxidase, MDHAR, ASC, and GSH levels was observed in the symplast from NaCl-treated pea cv Lincoln, whereas in pea cv Puget an increase in DHAR, GR, and MDHAR occurred. The results suggest a strong interaction between both cell compartments in the control of the apoplastic ASC content in pea leaves. However, this anti-oxidative response does not seem to be sufficient to remove the harmful effects of high salinity. This finding is more evident in pea cv Lincoln, which is characterized by a greater inhibition of the growth response and by a higher rise in the apoplastic hydrogen peroxide content, O(2)(.-) production and thiobarbituric acid-reactive substances, and CO protein levels. This NaCl-induced oxidative stress in the apoplasts might be related to the appearance of highly localized O(2)(.-)/H(2)O(2)-induced necrotic lesions in the minor veins in NaCl-treated pea plants. It is possible that both the different anti-oxidative capacity and the NaCl-induced response in the apoplast and in the symplast from pea cv Puget in comparison with pea cv Lincoln contributes to a better protection of pea cv Puget against salt stress.  相似文献   

13.

Key message

Two soybean cultivars showed markedly different drought tolerance. G6PDH plays a central role in the process of H 2 O 2 regulated GR, DHAR, and MDHAR activities to maintain GSH and Asc levels.

Abstract

Glucose-6-phosphate dehydrogenase (G6PDH) plays a pivotal role in plant resistance to environmental stresses. In this study, we investigated the role of G6PDH in modulating redox homeostasis under drought stress induced by polyethylene glycol 6000 (PEG6000) in two soybean cultivars JINDOU21 (JD-21) and WDD00172 (WDD-172). The G6PDH activity markedly increased and reached a maximum at 96 h in JD-21 and 72 h in WDD-172 during PEG6000 treatments, respectively. Glucosamine (Glucm, a G6PDH inhibitor) obviously inhibited G6PDH activity in both soybeans under PEG6000 treatments. After PEG6000 treatment, JD-21 showed higher tolerance than WDD-172 not only in higher activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), but also in higher content of glutathione (GSH) and ascorbate (Asc). And we found that hydrogen peroxide (H2O2) regulated the cell length in root elongation zone. Diphenylene iodonium (DPI, a plasma membrane NADPH oxidase inhibitor) counteracted the PEG6000-induced H2O2 accumulation and decreased the activities of GR, DHAR, and MDHAR as well as GSH and Asc content. Furthermore, exogenous application of H2O2 increased the GR, DHAR, and MDHAR activities that were decreased by Glucm under drought stress. Western blot analysis showed that the G6PDH expression was stimulated by PEG6000 and buthionine sulfoximine (BSO, glutathione biosynthesis inhibitor), and blocked by Glucm, DPI and N-acetyl-l-cysteine (NAC, GSH precursor) in both cultivars. Taken together, our evidence indicates that G6PDH plays a central role in the process of H2O2 regulated GR, DHAR, and MDHAR activities to maintain GSH and Asc levels.  相似文献   

14.
The antioxidative system was studied during the development of pea plants. The reduced glutathione (GSH) content was higher in shoots than in roots, but a greater redox state of glutathione existed in roots compared with shoots, at least after 7 d of growth. The 3-d-old seedlings showed the highest content of oxidised ascorbate (DHA), which correlated with the ascorbate oxidase (AAO) activity. Also, the roots exhibited higher DHA content than shoots, correlated with their higher AAO activity. The activities of antioxidant enzymes were much higher in shoots than in roots. Ascorbate peroxidase (APX) activity decreased during the progression of growth in both shoots and roots, whereas peroxidase (POX) activity strongly increased in roots, reflecting a correlation between POX activity and the enhancement of growth. Catalase activity from shoots reached values nearly 3 or 4-fold higher than in roots. The monodehydroascorbate reductase (MDHAR) activity was higher in young seedlings than in more mature tissues, and in roots a decrease in MDHAR was noticed at the 11th day. No dehydroascorbate reductase (DHAR) was detected in roots from the pea plants and DHAR values detected in seedlings and in shoots were much lower than those of MDHAR. In shoots, GR decreased with the progression of growth, whereas in roots an increase was seen on the 9th and 11th days. Finally, superoxide dismutase (SOD) activity increased in shoots during the progression of growth, but specific SOD activity was higher in roots than in shoots.  相似文献   

15.
The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.  相似文献   

16.
Treating plants with abiotic or biotic factors can lead to the establishment of a unique primed state of defense. Primed plants display enhanced defense reactions upon further challenge with environmental stressors. Here, we report that trivalent chromium (Cr(III)) pretreatment can alleviate hexavalent chromium (Cr(VI)) toxicity in 2-week-old wheat plants. The data indicate that Cr(III)-pretreated wheat displayed longer survival times and less heavy metal toxicity symptoms under Cr(VI) exposure than the control. To investigate the possible mechanism from an antioxidant defense perspective, we determined the H2O2 and lipid peroxide content (TBARS), the activities of antioxidant enzymes (SOD, CAT, APX and GR) and the antioxidant metabolite content (ascorbate and glutathione content, AsA/DHA and GSH/GSSG ratios) in pretreated wheat roots. The results showed that 0.5 μM Cr(III) pretreatment can alleviate oxidative damage, such as H2O2 and TBARS accumulation, in root tissues compared to the control during the first 3 days of Cr(VI) exposure. Furthermore, we determined that this pretreatment can significantly increase the antioxidant enzyme activities and total ascorbate and glutathione contents compared to the control treatment. In addition, redox homeostasis declined slightly in pretreated wheat compared to the control in the presence of Cr(VI). We discuss a possible mechanism for Cr(III)-mediated protection of wheat.  相似文献   

17.
18.
In plants, investigation on heavy metal toxicity and its mitigation by nutrient elements have gained much attention. However, mechanism(s) associated with nutrients-mediated mitigation of metal toxicity remain elusive. In this study, we have investigated the role and interrelation of glutathione (GSH) and hydrogen sulfide (H2S) in the regulation of hexavalent chromium [Cr(VI)] toxicity in tomato (Solanum lycopersicum), pea (Pisum sativum) and brinjal (Solanum melongena) seedlings, supplemented with additional sulfur (S). The results show that Cr(VI) significantly reduced growth, total chlorophyll and photosynthetic quantum yield of tomato, pea and brinjal seedlings which was accompanied by enhanced intracellular accumulation of Cr(VI) in roots. Moreover, Cr(VI) enhanced the generation of reactive oxygen species in the studied vegetables, while antioxidant defense system exhibited differential responses. However, additional supply of S alleviated Cr(VI) toxicity. Interestingly, addition of l-buthionine sulfoximine (BSO, a glutathione biosynthesis inhibitor) further increased Cr(VI) toxicity even in the presence of additional S but GSH addition reverses the effect of BSO. Under similar condition, endogenous H2S, l-cysteine desulfhydrase (DES) activity and cysteine content did not significantly differ when compared to controls. Hydroxylamine (HA, an inhibitor of DES) also increased Cr(VI) toxicity even in the presence of additional S but sodium hydrosulfide (NaHS, an H2S donor) reverses the effect of HA. Moreover, Cr(VI) toxicity amelioration by NaHS was reversed by the addition of hypotaurine (HT, an H2S scavenger). Taken together, the results show that GSH which might be derived from supplied S is involved in the mitigation of Cr(VI) toxicity in which H2S signaling preceded GSH biosynthesis.  相似文献   

19.
We investigated the relationship between H2O2 metabolism and the senescence process using soluble fractions, mitochondria, and peroxisomes from senescent pea (Pisum sativum L.) leaves. After 11 d of senescence the activities of Mn-superoxide dismutase, dehydroascorbate reductase (DHAR), and glutathione reductase (GR) present in the matrix, and ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities localized in the mitochondrial membrane, were all substantially decreased in mitochondria. The mitochondrial ascorbate and dehydroascorbate pools were reduced, whereas the oxidized glutathione levels were maintained. In senescent leaves the H2O2 content in isolated mitochondria and the NADH- and succinate-dependent production of superoxide (O2·−) radicals by submitochondrial particles increased significantly. However, in peroxisomes from senescent leaves both membrane-bound APX and MDHAR activities were reduced. In the matrix the DHAR activity was enhanced and the GR activity remained unchanged. As a result of senescence, the reduced and the oxidized glutathione pools were considerably increased in peroxisomes. A large increase in the glutathione pool and DHAR activity were also found in soluble fractions of senescent pea leaves, together with a decrease in GR, APX, and MDHAR activities. The differential response to senescence of the mitochondrial and peroxisomal ascorbate-glutathione cycle suggests that mitochondria could be affected by oxidative damage earlier than peroxisomes, which may participate in the cellular oxidative mechanism of leaf senescence longer than mitochondria.  相似文献   

20.
The involvement of the ascorbate-glutathione cycle in the defence against Cu-induced oxidative stress was studied in the roots of Phaseolus vulgaris L. cv. Limburgse vroege. All the enzymes of this cycle [ascorbate peroxidase (APOD), EC 1.11.1.11; monodehydroascorbate reductase (MDHAR), EC 1.6.5.4; dehydroascorbate reductase (DHAR), EC 1.8.5.1; glutathione reductase (GR), EC 1.6.4.2] were increased, and the total ascorbate and glutathione pools rose after a 15 μ M root Cu treatment. In the first hours after the start of the experiment, the accumulation of dehydroascorbate (DHA), formed as a result of a Cu-mediated direct oxidation of ascorbate (AA), was limited by a non-enzymatic reduction using glutathione (GSH) as the reductant. At 24 h, the enzyme capacities of both DHAR and GR were increased to maintain the redox status of the AA and GSH pools. After 72 h of Cu application, the DHAR capacity was inhibited and MDHAR was responsible for maintaining the AA pool in its reduced form. Although the GR capacity was enhanced after 72 h in the treated plants, the GSSG/GSH ratio was increased. This could be due to direct participation of GSH in the detoxification of Cu through reduction and complexation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号