首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Flap endonuclease 1 (FEN1) and Dna2 endonuclease/helicase (Dna2) sequentially coordinate their nuclease activities for efficient resolution of flap structures that are created during the maturation of Okazaki fragments and repair of DNA damage. Acetylation of FEN1 by p300 inhibits its endonuclease activity, impairing flap cleavage, a seemingly undesirable effect. We now show that p300 also acetylates Dna2, stimulating its 5′–3′ endonuclease, the 5′–3′ helicase, and DNA-dependent ATPase activities. Furthermore, acetylated Dna2 binds its DNA substrates with higher affinity. Differential regulation of the activities of the two endonucleases by p300 indicates a mechanism in which the acetylase promotes formation of longer flaps in the cell at the same time as ensuring correct processing. Intentional formation of longer flaps mediated by p300 in an active chromatin environment would increase the resynthesis patch size, providing increased opportunity for incorrect nucleotide removal during DNA replication and damaged nucleotide removal during DNA repair. For example, altering the ratio between short and long flap Okazaki fragment processing would be a mechanism for better correction of the error-prone synthesis catalyzed by DNA polymerase α.  相似文献   

3.
The Saccharomyces cerevisiae Dna2, which contains single-stranded DNA-specific endonuclease activity, interacts genetically and physically with Fen-1, a structure-specific endonuclease implicated in Okazaki fragment maturation during lagging strand synthesis. In this report, we investigated the properties of the Dna2 helicase/endonuclease activities in search of their in vivo physiological functions in eukaryotes. We found that the Dna2 helicase activity translocates in the 5' to 3' direction and uses DNA with free ends as the preferred substrate. Furthermore, the endonucleolytic cleavage activity of Dna2 was markedly stimulated by the presence of an RNA segment at the 5'-end of single-stranded DNA and occurred within the DNA, ensuring the complete removal of the initiator RNA segment on the Okazaki fragment. In addition, we demonstrated that the removal of pre-existing initiator 5'-terminal RNA segments depended on a displacement reaction carried out during the DNA polymerase delta-catalyzed elongation of the upstream Okazaki fragments. These properties indicate that Dna2 is well suited to remove the primer RNA on the Okazaki fragment. Based op this information, we propose a new model in which Dna2 plays a direct role in Okazaki fragment maturation in conjunction with Fen-1.  相似文献   

4.
5.
The removal of initiating primers from the 5′-ends of each Okazaki fragment, required for the generation of contiguous daughter strands, can be catalyzed by the combined action of DNA polymerase δ and Fen1. When the flaps generated by displacement of DNA synthesis activity of polymerase δ become long enough to bind replication protein A or form hairpin structures, the helicase/endonuclease enzyme, Dna2, becomes critical because of its ability to remove replication protein A-coated or secondary structure flaps. In this study, we show that the N-terminal 45-kDa domain of Dna2 binds hairpin structures, allowing the enzyme to target secondary structure flap DNA. We found that this activity was essential for the efficient removal of hairpin flaps by the endonuclease activity of Dna2 with the aid of its helicase activity. Thus, the efficient removal of hairpin structure flaps requires the coordinated action of all three functional domains of Dna2. We also found that deletion of the N-terminal 45-kDa domain of Dna2 led to a partial loss of the intra-S-phase checkpoint function and an increased rate of homologous recombination in yeast. We discuss the potential roles of the N-terminal domain of Dna2 in the maintenance of genomic stability.  相似文献   

6.
In eukaryotes, the creation of ligatable nicks in DNA from flap structures generated by DNA polymerase δ-catalyzed displacement DNA synthesis during Okazaki fragment processing depends on the combined action of Fen1 and Dna2. These two enzymes contain partially overlapping but distinct endonuclease activities. Dna2 is well-suited to process long flaps, which are converted to nicks by the subsequent action of Fen1. In this report, we purified human Dna2 as a recombinant protein from human cells transfected with the cDNA of the human homologue of Saccharomyces cerevisiae Dna2. We demonstrated that the purified human Dna2 enzyme contains intrinsic endonuclease and DNA-dependent ATPase activities, but is devoid of detectable DNA helicase activity. We determined a number of enzymatic properties of human Dna2 including its substrate specificity. When both 5′ and 3′ tailed ssDNAs were present in a substrate, such as a forked-structured one, both single-stranded regions were cleaved by human Dna2 (hDna2) with equal efficiency. Based on this and other properties of hDna2, it is likely that this enzyme facilitates the removal of 5′ and 3′ regions in equilibrating flaps that are likely to arise during the processing of Okazaki fragments in human cells.  相似文献   

7.
Lee KH  Kim DW  Bae SH  Kim JA  Ryu GH  Kwon YN  Kim KA  Koo HS  Seo YS 《Nucleic acids research》2000,28(15):2873-2881
Dna2 is a multifunctional enzyme in yeast that possesses endonuclease activity well suited to remove RNA–DNA primers of Okazaki fragments, raising the question of whether endonuclease activity is essential for in vivo Dna2 function. Systematic site-directed mutations of amino acid residues in Saccharomyces cerevisiae DNA2 conserved in the central region of many eukaryotic DNA2 homologs allowed us to identify mutant dna2 alleles that were divided into three groups based on the viability of the mutant cells: (i) viable; (ii) inviable only when expression was repressed; (iii) inviable. Biochemical analyses of recombinant mutant Dna2 proteins isolated from the latter two groups revealed that they possessed normal ATPase/helicase activity, but were impaired in their endonuclease activity. Cells expressing mutant Dna2 enzymes partially impaired in endonuclease activity were viable, but were unable to grow when expression of their mutant Dna2 enzymes was further reduced. Their growth was restored when the mutant Dna2 proteins decreased in nuclease activity were induced to overexpress. In contrast, mutant Dna2 proteins lacking endonuclease activity did not allow cells to grow under any conditions tested. These in vivo and in vitro results demonstrate that the endonuclease activity of Dna2 is essential for Okazaki fragment processing.  相似文献   

8.
Short DNA segments designated Okazaki fragments are intermediates in eukaryotic DNA replication. Each contains an initiator RNA/DNA primer (iRNA/DNA), which is converted into a 5'-flap and then removed prior to fragment joining. In one model for this process, the flap endonuclease 1 (FEN1) removes the iRNA. In the other, the single-stranded binding protein, replication protein A (RPA), coats the flap, inhibits FEN1, but stimulates cleavage by the Dna2p helicase/nuclease. RPA dissociates from the resultant short flap, allowing FEN1 cleavage. To determine the most likely process, we analyzed cleavage of short and long 5'-flaps. FEN1 cleaves 10-nucleotide fixed or equilibrating flaps in an efficient reaction, insensitive to even high levels of RPA or Dna2p. On 30-nucleotide fixed or equilibrating flaps, RPA partially inhibits FEN1. CTG flaps can form foldback structures and were inhibitory to both nucleases, however, addition of a dT(12) to the 5'-end of a CTG flap allowed Dna2p cleavage. The presence of high Dna2p activity, under reaction conditions favoring helicase activity, substantially stimulated FEN1 cleavage of tailed-foldback flaps and also 30-nucleotide unstructured flaps. Our results suggest Dna2p is not used for processing of most flaps. However, Dna2p has a role in a pathway for processing structured flaps, in which it aids FEN1 using both its nuclease and helicase activities.  相似文献   

9.
Eukaryotic Okazaki fragments are initiated by a RNA/DNA primer, which is removed before the fragments are joined. Polymerase delta displaces the primer into a flap for processing. Dna2 nuclease/helicase and flap endonuclease 1 (FEN1) are proposed to cleave the flap. The single-stranded DNA-binding protein, replication protein A (RPA), governs cleavage activity. Flap-bound RPA inhibits FEN1. This necessitates cleavage by Dna2, which is stimulated by RPA. FEN1 then cuts the remaining RPA-free flap to create a nick for ligation. Cleavage by Dna2 requires that it enter the 5'-end and track down the flap. Because Dna2 cleaves the RPA-bound flap, we investigated the mechanism by which Dna2 accesses the protein-coated flap for cleavage. Using a nuclease-defective Dna2 mutant, we showed that just binding of Dna2 dissociates the flap-bound RPA. Facile dissociation is specific to substrates with a genuine flap, and will not occur with an RPA-coated single strand. We also compared the cleavage patterns of Dna2 with and without RPA to better define RPA stimulation of Dna2. Stimulation derived from removal of DNA folding in the flap. Apparently, coordinated with its dissociation, RPA relinquishes the flap to Dna2 for tracking in a way that does not allow flap structure to reform. We also found that RPA strand melting activity promotes excessive flap elongation, but it is suppressed by Dna2-promoted RPA dissociation. Overall, results indicate that Dna2 and RPA coordinate their functions for efficient flap cleavage and preparation for FEN1.  相似文献   

10.
Okazaki fragments contain an initiator RNA/DNA primer that must be removed before the fragments are joined. In eukaryotes, the primer region is raised into a flap by the strand displacement activity of DNA polymerase delta. The Dna2 helicase/nuclease and then flap endonuclease 1 (FEN1) are proposed to act sequentially in flap removal. Dna2 and FEN1 both employ a tracking mechanism to enter the flap 5' end and move toward the base for cleavage. In the current model, Dna2 must enter first, but FEN1 makes the final cut at the flap base, raising the issue of how FEN1 passes the Dna2. To address this, nuclease-inactive Dna2 was incubated with a DNA flap substrate and found to bind with high affinity. FEN1 was then added, and surprisingly, there was little inhibition of FEN1 cleavage activity. FEN1 was later shown, by gel shift analysis, to remove the wild type Dna2 from the flap. RNA can be cleaved by FEN1 but not by Dna2. Pre-bound wild type Dna2 was shown to bind an RNA flap but not inhibit subsequent FEN1 cleavage. These results indicate that there is a novel interaction between the two proteins in which FEN1 disengages the Dna2 tracking mechanism. This interaction is consistent with the idea that the two proteins have evolved a special ability to cooperate in Okazaki fragment processing.  相似文献   

11.
Dna2 protein plays an important role in Okazaki fragment maturation on the lagging strand and also participates in DNA repair in Eukarya. Herein, we report the first biochemical characterization of a Dna2 homologue from Archaea, the hyperthermophile Pyrococcus horikoshii (Dna2Pho). Dna2Pho has both a RecB-like nuclease motif and seven conserved helicase motifs similar to Dna2 from Saccharomyces cerevisiae. Dna2Pho has single-stranded (ss) DNA-stimulated ATPase activity, DNA helicase activity (5' to 3' direction) requiring ATP, and nuclease activity, which prefers free 5'-ends of ssDNA as substrate. These activities depend on MgCl(2) concentrations. Dna2Pho requires a higher concentration of MgCl(2) for the nuclease than helicase activity. Both the helicase and nuclease activities of Dna2Pho were inhibited by substrates with RNA segments at the 5'-end of flap DNA, whereas the nuclease activity of Dna2 from S. cerevisiae was reported to be stimulated by RNA segments in the 5'-tail (Bae, S.-H., and Seo, Y. S. (2000) J. Biol. Chem. 38022-38031).  相似文献   

12.
Two pathways have been proposed for eukaryotic Okazaki fragment RNA primer removal. Results presented here provide evidence for an alternative pathway. Primer extension by DNA polymerase δ (pol δ) displaces the downstream fragment into an RNA-initiated flap. Most flaps are cleaved by flap endonuclease 1 (FEN1) while short, and the remaining nicks joined in the first pathway. A small fraction escapes immediate FEN1 cleavage and is further lengthened by Pif1 helicase. Long flaps are bound by replication protein A (RPA), which inhibits FEN1. In the second pathway, Dna2 nuclease cleaves an RPA-bound flap and displaces RPA, leaving a short flap for FEN1. Pif1 flap lengthening creates a requirement for Dna2. This relationship should not have evolved unless Pif1 had an important role in fragment processing. In this study, biochemical reconstitution experiments were used to gain insight into this role. Pif1 did not promote synthesis through GC-rich sequences, which impede strand displacement. Pif1 was also unable to open fold-back flaps that are immune to cleavage by either FEN1 or Dna2 and cannot be bound by RPA. However, Pif1 working with pol δ readily unwound a full-length Okazaki fragment initiated by a fold-back flap. Additionally, a fold-back in the template slowed pol δ synthesis, so that the fragment could be removed before ligation to the lagging strand. These results suggest an alternative pathway in which Pif1 removes Okazaki fragments initiated by fold-back flaps in vivo.  相似文献   

13.
During DNA replication, synthesis of the lagging strand occurs in stretches termed Okazaki fragments. Before adjacent fragments are ligated, any flaps resulting from the displacement of the 5′ DNA end of the Okazaki fragment must be cleaved. Previously, Dna2 was implicated to function upstream of flap endonuclease 1 (Fen1 or Rad27) in the processing of long flaps bound by the replication protein A (RPA). Here we show that Dna2 efficiently cleaves long DNA flaps exactly at or directly adjacent to the base. A fraction of the flaps cleaved by Dna2 can be immediately ligated. When coupled with DNA replication, the flap processing activity of Dna2 leads to a nearly complete Okazaki fragment maturation at sub-nanomolar Dna2 concentrations. Our results indicate that a subsequent nucleolytic activity of Fen1 is not required in most cases. In contrast Dna2 is completely incapable to cleave short flaps. We show that also Dna2, like Fen1, interacts with proliferating cell nuclear antigen (PCNA). We propose a model where Dna2 alone is responsible for cleaving of RPA-bound long flaps, while Fen1 or exonuclease 1 (Exo1) cleave short flaps. Our results argue that Dna2 can function in a separate, rather than in a Fen1-dependent pathway.  相似文献   

14.
The polyguanine-rich DNA sequences commonly found at telomeres and in rDNA arrays have been shown to assemble into structures known as G quadruplexes, or G4 DNA, stabilized by base-stacked G quartets, an arrangement of four hydrogen-bonded guanines. G4 DNA structures are resistant to the many helicases and nucleases that process intermediates arising in the course of DNA replication and repair. The lagging strand DNA replication protein, Dna2, has demonstrated a unique localization to telomeres and a role in de novo telomere biogenesis, prompting us to study the activities of Dna2 on G4 DNA-containing substrates. We find that yeast Dna2 binds with 25-fold higher affinity to G4 DNA formed from yeast telomere repeats than to single-stranded DNA of the same sequence. Human Dna2 also binds G4 DNAs. The helicase activities of both yeast and human Dna2 are effective in unwinding G4 DNAs. On the other hand, the nuclease activities of both yeast and human Dna2 are attenuated by the formation of G4 DNA, with the extent of inhibition depending on the topology of the G4 structure. This inhibition can be overcome by replication protein A. Replication protein A is known to stimulate the 5'- to 3'-nuclease activity of Dna2; however, we go on to show that this same protein inhibits the 3'- to 5'-exo/endonuclease activity of Dna2. These observations are discussed in terms of possible roles for Dna2 in resolving G4 secondary structures that arise during Okazaki fragment processing and telomere lengthening.  相似文献   

15.
Polymerase dynamics at the eukaryotic DNA replication fork   总被引:2,自引:0,他引:2  
This review discusses recent insights in the roles of DNA polymerases (Pol) delta and epsilon in eukaryotic DNA replication. A growing body of evidence specifies Pol epsilon as the leading strand DNA polymerase and Pol delta as the lagging strand polymerase during undisturbed DNA replication. New evidence supporting this model comes from the use of polymerase mutants that show an asymmetric mutator phenotype for certain mispairs, allowing an unambiguous strand assignment for these enzymes. On the lagging strand, Pol delta corrects errors made by Pol alpha during Okazaki fragment initiation. During Okazaki fragment maturation, the extent of strand displacement synthesis by Pol delta determines whether maturation proceeds by the short or long flap processing pathway. In the more common short flap pathway, Pol delta coordinates with the flap endonuclease FEN1 to degrade initiator RNA, whereas in the long flap pathway, RNA removal is initiated by the Dna2 nuclease/helicase.  相似文献   

16.
We have recently described a new helicase, the Dna2 helicase, that is essential for yeast DNA replication. We now show that the yeast FEN-1 (yFEN-1) nuclease interacts genetically and biochemically with Dna2 helicase. FEN-1 is implicated in DNA replication and repair in yeast, and the mammalian homolog of yFEN-1 (DNase IV, FEN-1, or MF1) participates in Okazaki fragment maturation. Overproduction of yFEN-1, encoded by RAD27/RTH1, suppresses the temperature-sensitive growth of dna2-1 mutants. Overproduction of Dna2 suppresses the rad27/rth1 delta temperature-sensitive growth defect. dna2-1 rad27/rth1 delta double mutants are inviable, indicating that the mutations are synthetically lethal. The genetic interactions are likely due to direct physical interaction between the two proteins, since both epitope-tagged yFEN-1 and endogenous yFEN-1 coimmunopurify with tagged Dna2. The simplest interpretation of these data is that one of the roles of Dna2 helicase is associated with processing of Okazaki fragments.  相似文献   

17.
Two processes, DNA replication and DNA damage repair, are key to maintaining genomic fidelity. The Dna2 enzyme lies at the heart of both of these processes, acting in conjunction with flap endonuclease 1 and replication protein A in DNA lagging strand replication and with BLM/Sgs1 and MRN/X in double strand break repair. In vitro, Dna2 helicase and flap endo/exonuclease activities require an unblocked 5' single-stranded DNA end to unwind or cleave DNA. In this study we characterize a Dna2 nuclease activity that does not require, and in fact can create, 5' single-stranded DNA ends. Both endonuclease and flap endo/exonuclease are abolished by the Dna2-K677R mutation, implicating the same active site in catalysis. In addition, we define a novel ATP-dependent flap endo/exonuclease activity, which is observed only in the presence of Mn(2+). The endonuclease is blocked by ATP and is thus experimentally distinguishable from the flap endo/exonuclease function. Thus, Dna2 activities resemble those of RecB and AddAB nucleases even more closely than previously appreciated. This work has important implications for understanding the mechanism of action of Dna2 in multiprotein complexes, where dissection of enzymatic activities and cofactor requirements of individual components contributing to orderly and precise execution of multistep replication/repair processes depends on detailed characterization of each individual activity.  相似文献   

18.
19.
In order to gain insights into the structural basis of the multifunctional Dna2 enzyme involved in Okazaki fragment processing, we performed biochemical, biophysical and genetic studies to dissect the domain structure of Dna2. Proteolytic digestion of Dna2 using subtilisin produced a 127 kDa polypeptide that lacked the 45 kDa N-terminal region of Dna2. Further digestion generated two subtilisin-resistant core fragments of approximately equal size, 58 and 60 kDa. Surprisingly, digestion resulted in a significant (3- to 8-fold) increase in both ATPase and endonuclease activities compared to the intact enzyme. However, cells with a mutant DNA2 allele lacking the corresponding N-terminal region were severely impaired in growth, being unable to grow at 37°C, indicating that the N-terminal region contains a domain critical for a cellular function(s) of Dna2. Analyses of the hydrodynamic properties of and in vivo complex formation by wild-type and/or mutant Dna2 lacking the N-terminal 45 kDa domain revealed that Dna2 is active as the monomer and thus the defect in the mutant Dna2 protein is not due to its inability to multimerize. In addition, we found that the N-terminal 45 kDa domain interacts physically with a central region located between the two catalytic domains. Our results suggest that the N-terminal 45 kDa domain of Dna2 plays a critical role in regulation of the enzymatic activities of Dna2 by serving as a site for intra- and intermolecular interactions essential for optimal function of Dna2 in Okazaki fragment processing. The possible mode of regulation of Dna2 is discussed based upon our recent finding that replication protein A interacts functionally and physically with Dna2 during Okazaki fragment processing.  相似文献   

20.
Okazaki fragment maturation to produce continuous lagging strands in eukaryotic cells requires precise coordination of strand displacement synthesis by DNA polymerase delta (Pol delta) with 5.-flap cutting by FEN1(RAD27) endonuclease. Excessive strand displacement is normally prevented by the 3.-exonuclease activity of Pol delta. This core maturation machinery can be assisted by Dna2 nuclease/helicase that processes long flaps. Our genetic studies show that deletion of the POL32 (third subunit of Pol delta) or PIF1 helicase genes can suppress lethality or growth defects of rad27Delta pol3-D520V mutants (defective for FEN1(RAD27) and the 3.-exonuclease of Pol delta) that produce long flaps and of dna2Delta mutants that are defective in cutting long flaps. On the contrary, pol32Delta or pif1Delta caused lethality of rad27Delta exo1Delta double mutants, suggesting that Pol32 and Pif1 are required to generate longer flaps that can be processed by Dna2 in the absence of the short flap processing activities of FEN1(RAD27) and Exo1. The genetic analysis reveals a remarkable flexibility of the Okazaki maturation machinery and is in accord with our biochemical analysis. In vitro, the generation of short flaps by Pol delta is not affected by the presence of Pol32; however, longer flaps only accumulate when Pol32 is present. The presence of FEN1(RAD27) during strand displacement synthesis curtails displacement in favor of flap cutting, thus suggesting an active hand-off mechanism from Pol delta to FEN1(RAD27). Finally, RNA-DNA hybrids are more readily displaced by Pol delta than DNA hybrids, thereby favoring degradation of initiator RNA during Okazaki maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号