首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first 3 years of the 21st century have seen the impact of plant proteomics on functional genomics that has enhanced our understanding, not only on the plant genome(s), but also more importantly, on the functional aspect of proteins. This is mainly due to availability of the complete genome sequence of the Arabidopsis thaliana-a dicotyledoneous (dicot) model plant-and technological advancements in proteomics. Proteomic analyses of a variety of dicot plants, including both Arabidopsis and the model legume species, barrel medic (Medicago truncatula), have greatly helped in an efficient separation, identification and cataloguing of a large number of proteins, and thereby defining their proteomes. Therefore, we have composed an inclusive review on dicot plant materials, as of February 2004, that provides system, trends and perspectives of proteomics in growth and development and the environment. The review is summarized and discussed as three individual, but interlinked, entities: Part I, technologies in proteome establishment (this review), Part II, proteomes of the complex developmental stages [G.K. Agrawal, M. Yonekura, Y. Iwahashi, H. Iwahashi, R. Rakwal, J. Chromatogr. B (2004)], and Part III, unraveling the proteomes influenced by the environment, and at the levels of function and genetic relationships [G.K. Agrawal, M. Yonekura, Y. Iwahashi, H. Iwahashi, R. Rakwal, J. Chromatogr. B (2004)]. This review deals with the diverse proteomic technologies being used in proteome development of different dicot plants.  相似文献   

2.
This review is devoted to the proteomics studies in dicotyledoneous (dicot) plants, such as Arabidopsis, Medicago, potato, soybean, and tomato, under the influence of the environment and at the functional and genetic relationship levels, where the two core technologies, two-dimensional gel electrophoresis (2-DGE) and mass spectrometry (MS) have been instrumental in unraveling the proteomes affected therein. Abiotic and biotic stress responses, including the affect of allergens, the symbiotic interaction between the members of the Leguminoseae family and genera of nitrogen fixing bacteria, phosphoproteomics, and proteomics in revealing the genetic relationships between species and genera have been the subject of many proteomics studies, and these are discussed in this review. In all, these studies have complemented and extended the studies of developmental proteomics [G.K. Agrawal, M. Yonekura, Y. Iwahashi, H. Iwahashi, R. Rakwal, J. Chromatogr. B (2004)].  相似文献   

3.
Flowering plants, angiosperms, can be divided into two major clades, monocots and dicots, and while differences in amino acid composition in different species from the two clades have been reported, a systematic analysis of amino acid content and distribution remains outstanding. Here, we show that monocot and dicot proteins have developed distinct amino acid content. In Arabidopsis thaliana and poplar, as in the ancestral moss Physcomitrella patens, the average mass per amino acid appears to be independent of protein length, while in the monocots rice, maize and sorghum, shorter proteins tend to be made of lighter amino acids. An examination of the elemental content of these proteomes reveals that the difference between monocot and dicot proteins can be largely attributed to their different carbon signatures. In monocots, the shorter proteins, which comprise the majority of all proteins, are made of amino acids with less carbon, while the nitrogen content is unchanged in both monocots and dicots. We hypothesise that this signature could be the result of carbon use and energy optimisation in fast-growing annual Poaceae (grasses).  相似文献   

4.
Mushroom can be defined as a macrofungus with a distinctive fruiting body. Mushrooms of class Basidiomycete are primarily wood degradation fungi, but serve as food and a part of traditional medicine used by humans. Although their life cycle is fairly well-established, the information on the molecular components, especially proteins are very limited. Here, we report proteomics analysis of two edible mushrooms (fruiting bodies) Sparassis crispa and Hericium erinaceum using one- and two-dimensional gel electrophoresis (1-DGE and 2-DGE) based complementary proteomics approaches. 1-DGE coupled with liquid chromatography and mass spectrometry identified 77 (60 nonredundant proteins) and 121 (88 nonredundant proteins) proteins from S. crispa and H. erinaceum, respectively. 2-DGE analysis revealed 480 and 570 protein spots stained with colloidal coomassie brilliant blue in S. crispa and H. erinaceum, respectively. Of the 71 and 115 selected protein spots from S. crispa and H. erinaceum 2D gel blots on polyvinyldifluoride (PVDF) membranes, respectively, 29 and 35 nonredundant proteins were identified by N-terminal amino acid sequencing. Identified nonredundant proteins from 1- or 2-DGE belonged to 19 functional categories. Twenty-one proteins were found common in both S. crispa and H. erinaceum proteomes, including 14-3-3 protein and septin. Together this study provides evidence for the presence of a large number of functionally diverse proteins, expressed in the fruiting body of two economically important mushrooms, S. crispa and H. erinaceum. Data obtained from 1-DGE and 2-DGE analyses is accessible through the mushroom proteomics portal http://foodfunc.agr.ibaraki.ac.jp/mushprot.html.  相似文献   

5.
6.
7.
8.
Development and organogenesis in both dicot and monocot plants are highly dependent on polar auxin transport (PAT), which requires the proper asymmetric localization of both auxin influx and efflux carriers. In the model dicot plant Arabidopsis thaliana, the trafficking and localization of auxin efflux facilitators such as PIN-FORMED1 (PIN1) are mediated by GNOM, a guanine-nucleotide exchange factor (GEF) for the ADP-ribosylation factor (ARF) family of small GTPases, but molecular regulators of the auxin influx facilitators remain unknown. Here, we show that over-expression of OsAGAP, an ARF-GTPase-activating protein (ARF-GAP) in rice, impaired PAT and interfered with both primary and lateral root development. The lateral root phenotype could be rescued by the membrane-permeable auxin 1-naphthyl acetic acid, but not by indole 3-acetic acid (IAA) or by 2,4-dichloro-phenoxyacetic acid, which require influx facilitators to enter the cells. OsAGAP-over-expressing plants had alterations in vesicle trafficking and localization of the presumptive A. thaliana auxin-influx carrier AUX1, but not in the localization of the auxin efflux facilitators. Together, our data suggest that OsAGAP has a specific role in regulating vesicle trafficking pathways such as the auxin influx pathway, which in turn controls auxin-dependent root growth in plants.  相似文献   

9.
10.
11.
Mapping the proteome of barrel medic (Medicago truncatula)   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

12.
13.
14.
Proteomics is progressing at an unprecedented pace, as can be exemplified by the progress in model organisms such as yeast, bacteria, and mammals. Proteomics research in plants, however, has not progressed at the same pace. Unscrambling of the genome sequences of the dicotyledoneous Arabidopsis thaliana (L.) and monocotyledoneous rice (Oryza sativa L.) plant species, respectively, has made them accessible reference organisms to study plant proteomics. Study of these two reference plants is expected to unravel the mystery of plant biology. Rice, a critically important food crop on the earth, has been termed a "cornerstone" and the "Rosetta stone" for functional genomics of cereal crops. Here, we look at the progress in unraveling rice proteomes and present the facts, challenges, and vision. The text is divided into two major parts: the first part presents the facts and the second part discusses the challenges and vision. The facts include the technology and its use in developing proteomes, which have been critically and constructively reviewed. The challenges and vision deal with the establishment of technologies to exhaustively investigate the protein components of a proteome, to generate high-resolution gel-based reference maps, and to give rice proteomics a functional dimension by studying PTMs and isolation of multiprotein complexes. Finally, we direct a vision on rice proteomics. This is our third review in series on rice proteomics, which aims to stimulate an objective discussion among rice researchers and to understand the necessity and impact of unraveling rice proteomes to their full potential.  相似文献   

15.
Sample preparation in plant proteomics is tedious, requiring modifications depending on the type of tissue involved. Here, we describe a protein extraction protocol for both monocotyledonous (monocot) and dicotyledonous (dicot) species, which significantly improves the solubilization of total proteins. For example, we used the primary leaf tissue and seeds from rice, a cereal crop and genome model system. Total protein was first precipitated with trichloroacetic acid/acetone extraction buffer (TCAAEB) and subsequently solubilized with a modified O’Farrell lysis buffer (LB) containing thiourea and tris (LB-TT). Separation of total leaf proteins by two-dimensional gel electrophoresis (2-DGE) revealed improved solubilization, as determined by an increased number of spots detected with Coomassie brilliant blue (CBB) staining. In addition, the resolution was better than when LB-TT was used alone for protein extraction. Seed proteins could be extracted in LB-TT itself without the need for TCAAEB, which resulted in a highly insoluble precipitate. Our CBB-stained 2-D gel protein profiles also demonstrated the efficacy of this protocol for total protein extraction/solubilization from the dicot genome model (Arabidopsis), a dicot disease model (cucumber), and two other important monocot cereal crop models (maize and wheat). Moreover, this is the first report on generating a 2-D gel proteome profile for wheat crown and cucumber leaf tissues. Finally, as examples of proteome reference maps, we obtained silver nitrate-stained, large-format 2-D gels for rice leaf and wheat crown LB-TT solubilized proteins.  相似文献   

16.
Protein ubiquitination is a posttranslational regulatory process essential for plant growth and interaction with the environment. E3 ligases, to which the seven in absentia (SINA) proteins belong, determine the specificity by selecting the target proteins for ubiquitination. SINA proteins are found in animals as well as in plants, and a small gene family with highly related members has been identified in the genome of rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), Medicago truncatula, and poplar (Populus trichocarpa). To acquire insight into the function of SINA proteins in nodulation, a dominant negative form of the Arabidopsis SINAT5 was ectopically expressed in the model legume M. truncatula. After rhizobial inoculation of the 35S:SINAT5DN transgenic plants, fewer nodules were formed than in control plants, and most nodules remained small and white, a sign of impaired symbiosis. Defects in rhizobial infection and symbiosome formation were observed by extensive microscopic analysis. Besides the nodulation phenotype, transgenic plants were affected in shoot growth, leaf size, and lateral root number. This work illustrates a function for SINA E3 ligases in a broad spectrum of plant developmental processes, including nodulation.  相似文献   

17.
水稻U2snRNA基因的分离及结构分析   总被引:1,自引:0,他引:1  
对水稻(Oryza sativa L.)基因文库中分离到的U2snRNA基因FDRGU2.3进行序列分析,其编码区与小麦(Triticum aestivum L、)、玉米(Zea mays L.)、豌豆(Pisum sativum L.)及拟南芥(Arabidopsis thaliana(L.)Heyhy.)等植物U2基因的同源性均大于80%,且5'端70个碱基高度保守。在基因编码区上游-70及-30区分别包含有植物UsnRNA基因特有的上游顺序元件(USE)及类TATA元件。同其它植物一样,水稻U2.3snRNA的二级结构也有保守的4个茎环区。其中环Ⅱ的结构与单子叶植物中的小麦和玉米相同,但与双子叶植物的豌豆和拟南芥存在明显差异。环Ⅳ的结构在单子叶和双子叶植物中亦有不同的变化。这些差异可能意味着单子叶和双子叶植物的剪接机构有所区别。  相似文献   

18.
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid(SA) and gibberellin(GA), in co-regulation of plant...  相似文献   

19.
Comparative genetics of flowering time   总被引:30,自引:0,他引:30  
Analysis of genes controlling flowering time (heading date) contributes to our understanding of fundamental principles of plant development and is of practical importance because of the effects of flowering time on plant adaptation and crop yield. This review discusses the extent to which plants may share common genetic mechanisms for the control of flowering time and the implications of such conservation for gene isolation from the major cereal crops. Gene isolation may exploit the small genome of rice in map-based approaches, utilizing the conservation of gene order that is revealed when common DNA markers are mapped in different species. Alternatively, mechanisms may be conserved within plants as a whole, in which case genes cloned from the model dicot Arabidopsis thaliana provide an alternative route.  相似文献   

20.
Carbon transfer between plants via a common extraradical network of arbuscular mycorrhizal (AM) fungal hyphae has been investigated abundantly, but the results remain equivocal. We studied the transfer of carbon through this fungal network, from a Medicago truncatula donor plant to a receiver (1) M. truncatula plant growing under decreased light conditions and (2) M. truncatula seedling. Autotrophic plants were grown in bicompartmented Petri plates, with their root systems physically separated, but linked by the extraradical network of Glomus intraradices. A control Myc-/Nod- M. truncatula plant was inserted in the same compartment as the receiver plant. Following labeling of the donor plant with 13CO2, 13C was recovered in the donor plant shoots and roots, in the extraradical mycelium and in the receiver plant roots. Fatty acid analysis of the receiver's roots further demonstrated 13C enrichment in the fungal-specific lipids, while almost no label was detected in the plant-specific compounds. We conclude that carbon was transferred from the donor to the receiver plant via the AM fungal network, but that the transferred carbon remained within the intraradical AM fungal structures of the receiver's root and was not transferred to the receiver's plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号