首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu L  Zhang Z  Zhou X  Yin X  Yang L  Zhao D 《Gene》2011,485(2):102-105
The resistance or susceptibility of sheep to scrapie is associated with polymorphisms of the prion protein gene (PRNP), particularly, single nucleotide polymorphisms (SNPs) in amino acid positions 136, 154 and 171. The prion protein (PrP) gene sequence and the deduced amino acid alignment of prion protein in Tan sheep, a local Chinese sheep breed traditionally raised in Ningxia, northwestern China, were determined and variability of the PrP amino acids sequence was analyzed in this study. The PrP nucleic acids and amino acids sequences of 112 Tan sheep were highly homogenous, although polymorphism of the PrP gene was detected at several sites, particularly codons 106, 154, and 171. The analysis of both sequences revealed that the most predominant allele at codons 136, 154 and 171 in Tan sheep was ARQ, which was known to be associated with high susceptibility to scrapie in sheep. The result suggests that Tan sheep is potentially susceptible to scrapie. Our findings provide valuable information for future breeding projects to scrapie resistance in Tan sheep.  相似文献   

2.
Transmissible Spongiform Encephal-opathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist''s view of PrP functions might be clearer at a greater phylogenetic distance.Key words: prion protein, zebrafish, gene expression, embryo development, neurogenesis  相似文献   

3.
In prion-related encephalopathies, the cellular prion protein (PrP(C)) undergoes a change in conformation to become the scrapie prion protein (PrP(Sc)) which forms infectious deposits in the brain. Conceivably, the conformational transition of PrP(C) to PrP(Sc) might be linked with posttranslational alterations in the covalent structure of a fraction of the PrP molecules. We tested a synthetic peptide corresponding to residues 106-126 of human PrP for the occurrence of spontaneous chemical modifications. The only asparagine residue, Asn108, was deamidated to aspartic acid and isoaspartic acid with a half-life of about 12 days. The same posttranslational modifications were found in recombinant murine full-length protein. On aging, 0.8 mol of isoaspartyl residue per mole of protein was detected by the protein-l-isoaspartyl methyltransferase assay (t(1/2) approximately 30 days). Mass spectrometry and Edman degradation of Lys-C fragments identified Asn108 in the amino-terminal flexible part of the protein to be partially converted to aspartic acid and isoaspartic acid. A second modification was the partial isomerization of Asp226' which is only present in rodents.  相似文献   

4.
The partial PrP gene sequence and the deduced protein of eight cetacean species, seven of which have never been reported so far, have been determined in order to extend knowledge of sequence variability of the PrP genes in different species and to aid in speculation on cetacean susceptibility to prions. Both the nucleotide and the deduced amino acid sequences have been analysed in comparison with some of the known mammalian PrPs. Cetacean PrPs present typical features of eutherian PrPs. The PrP gene from the species of the family Delphinidae gave identical nucleic acid sequences, while differences in the PrP gene were found in Balaenopteridae and Ziphidae. The phylogenetic tree resulting from analysis of the cetacean PrP gene sequences, together with reported sequences of some ungulates, carnivores and primates, showed that the PrP gene phylogenesis mirrors the species phylogenesis. The PrP gene of cetaceans is very close to species where natural forms of TSEs are known. From an analysis of the sequences and the phylogenesis of the PrP gene, susceptibility to or occurrence of prion diseases in cetaceans can not be excluded.  相似文献   

5.
Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease.  相似文献   

6.
Production of cattle lacking prion protein   总被引:14,自引:0,他引:14  
Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.  相似文献   

7.
Prion protein is involved in severe neurodegenerative disorders but its physiological role is still in debate due to an absence of major developmental defects in knockout mice. Previous reports in zebrafish indicate that the two prion genes, PrP1 and PrP2, are both involved in several steps of embryonic development thus providing a unique route to discover prion protein function. Here we investigate the role of PrP2 during development of a mechano-sensory system, the posterior lateral line, using morpholino knockdown and PrP2 targeted inactivation. We confirm the efficiency of the translation blocking morpholino at the protein level. Development of the posterior lateral line is altered in PrP2 morphants, including nerve axonal outgrowth and primordium migration defects. Reduced neuromast deposition was observed in PrP2 morphants as well as in PrP2−/− mutants. Rosette formation defects were observed in PrP2 morphants, strongly suggesting an abnormal primordium organization and reflecting loss of cell cohesion during migration of the primordium. In addition, the adherens junction proteins, E-cadherin and ß-catenin, were mis-localized after reduction of PrP2 expression and thus contribute to the primordium disorganization. Consequently, hair cell differentiation and number were affected and this resulted in reduced functional neuromasts. At later developmental stages, myelination of the posterior lateral line nerve was altered. Altogether, our study reports an essential role of PrP2 in collective migration process of the primordium and in neuromast formation, further implicating a role for prion protein in cell adhesion.  相似文献   

8.
9.
10.
11.
12.
《朊病毒》2013,7(2):88-92
Transmissible Spongiform Encephalopathies (TSE) or prion diseases are a threat to food safety and to human and animal health. The molecular mechanisms responsible for prion diseases share similarities with a wider group of neurodegenerative disorders including Alzheimer disease and Parkinson disease and the central pathological event is a disturbance of protein folding of a normal cellular protein that is eventually accompanied by neuronal cell death and the death of the host. Prion protein (PrP) is a constituent of most normal mammalian cells and its presence is essential in the pathogenesis of TSE. However, the function of this normal cellular protein remains unclear. The prevention of PRNP gene expression in mammalian species has been undramatic, implying a functional redundancy. Yet PrP is conserved from mammals to fish. Recent studies of PrP in zebrafish have yielded novel findings showing that PrP has essential roles in early embryonic development. The amenability of zebrafish to global technologies has generated data indicating the existence of “anchorless” splice variants of PrP in the early embryo. This paper will discuss the possibility that the experimentalist’s view of PrP functions might be clearer at a greater phylogenetic distance.  相似文献   

13.
14.
15.
16.
17.
18.
prp6 and prp9 thermosensitive (ts) mutants are affected in pre-mRNA splicing and transport from the nucleus to the cytoplasm. PRP6 and PRP9 wild-type alleles have been sequenced. DNA sequence analysis reveals homologies in the 5' and 3' non-coding regions, suggesting a common regulation of gene expression. PRP6 and PRP9 genes encode a 899 amino acid and a 530 amino acid protein, respectively. The PRP6 protein has repeated motifs that evoke helix-loop-helix structures. Both PRP6 and PRP9 proteins have cysteine/histidine motifs loosely related to those found in zinc finger proteins. The substitution of some, but not all, of these residues by directed mutagenesis has a critical effect on the protein function. Homology searches reveal that two other proteins known to be involved in the nuclear splicing pathway--the yeast PRP11 and the human U1C proteins--contain similar sequences. The five cysteine/histidine motifs found in these four proteins display amino acid similarities in addition to the cysteine and histidine residues, indicating that they participate in biological structures or functions related to the splicing process. In addition, PRP6 and PRP9 exhibit leucine repeat motifs which may be implicated in protein interactions. The prp6 and prp9 ts mutations have been mapped and sequenced.  相似文献   

19.
20.
Molecular evolution of the mammalian prion protein   总被引:10,自引:0,他引:10  
Prion protein (PrP) sequences are until now available for only six of the 18 orders of placental mammals. A broader comparison of mammalian prions might help to understand the enigmatic functional and pathogenic properties of this protein. We therefore determined PrP coding sequences in 26 mammalian species to include all placental orders and major subordinal groups. Glycosylation sites, cysteines forming a disulfide bridge, and a hydrophobic transmembrane region are perfectly conserved. Also, the sequences responsible for secondary structure elements, for N- and C-terminal processing of the precursor protein, and for attachment of the glycosyl-phosphatidylinositol membrane anchor are well conserved. The N-terminal region of PrP generally contains five or six repeats of the sequence P(Q/H)GGG(G/-)WGQ, but alleles with two, four, and seven repeats were observed in some species. This suggests, together with the pattern of amino acid replacements in these repeats, the regular occurrence of repeat expansion and contraction. Histidines implicated in copper ion binding and a proline involved in 4-hydroxylation are lacking in some species, which questions their importance for normal functioning of cellular PrP. The finding in certain species of two or seven repeats, and of amino acid substitutions that have been related to human prion diseases, challenges the relevance of such mutations for prion pathology. The gene tree deduced from the PrP sequences largely agrees with the species tree, indicating that no major deviations occurred in the evolution of the prion gene in different placental lineages. In one species, the anteater, a prion pseudogene was present in addition to the active gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号