首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the soil bacterial community of a coniferous forest were analyzed to assess microbial responses to wildfire. Soil samples were collected from three different depths in lightly and severely burned areas, as well as a nearby unburned control area. Direct bacterial counts ranged from 3.3-22.6 x 10(8) cells/(g.soil). In surface soil, direct bacterial counts of unburned soil exhibited a great degree of fluctuation. Those in lightly burned soil changed less, but no significant variation was observed in the severely burned soil. The fluctuations of direct bacterial count were less in the middle and deep soil layers. The structure of the bacterial community was analyzed via the fluorescent in situ hybridization method. The number of bacteria detected with the eubacteria-targeted probe out of the direct bacterial count varied from 30.3 to 84.7%, and these ratios were generally higher in the burned soils than in the unburned control soils. In the surface unburned soil, the ratios of alpha-, beta- and gamma-proteobacteria, Cytophaga-Flavobacterium group, and other eubacteria groups to total eubacteria were 9.9, 10.6, 15.5, 9.0, and 55.0%, respectively, and these ratios were relatively stable. The ratios of alpha-, beta- and gamma-proteobacteria, and Cytophaga-Flavobacterium group to total eubacteria increased immediately after the wildfire, and the other eubacterial proportions decreased in the surface and middle layer soils. By way of contrast, the composition of the 5 groups of eubacteria in the subsurface soil exhibited no significant fluctuations during the entire period. The total bacterial population and bacterial community structure disturbed by wildfire soon began to recover, and original levels seemed to be restored 3 months after the wildfire.  相似文献   

2.
Growth promotion of wild plants by some plant growth-promoting rhizobacteria (PGPR) was examined in the microcosms composed of soils collected separately from a grass-covered site and a nongrass-covered site in a lakeside barren area at Lake Paro, Korea. After sowing the seeds of eight kinds of wild plants and inoculation of several strains of PGPR, the total bacterial number and microbial activity were measured during 5 months of study period, and the plant biomasses grown were compared at the end of the study. Acridine orange direct counts in the inoculated microcosms, 1.3-9.8 x 10(9) cells x g soil(-1) in the soil from the grass-covered area and 0.9-7.2 x 10(9) cells x g soil(-1) in the soil from the nongrass-covered site, were almost twice higher than those in the uninoculated microcosms. The number of Pseudomonas sp., well-known bacteria as PGPR, and the soil dehydrogenase activity were also higher in the inoculated soils than the uninoculated soils. The first germination of sowed seeds in the inoculated microcosm was 5 days earlier than the uninoculated microcosm. Average lengths of all plants grown during the study period were 26% and 29% longer in the inoculated microcosms starting with the grass-covered soil and the nongrass-covered soil, respectively, compared with those in the uninoculated microcosms. Dry weights of whole plants grown were 67-82% higher in the inoculated microcosms than the uninoculated microcosms. Microbial population and activity and growth promoting effect by PGPR were all higher in the soils collected from the grass-covered area than in the nongrass-covered area. The growth enhancement of wild plants seemed to occur by the activities of inoculated microorganisms, and this capability of PGPR may be utilized for rapid revegetation of some barren lands.  相似文献   

3.
Measurement of soil microbial biomass and abundance offers a means of assessing the response of all microbial populations to changes in the soil environment after a fire. We examined the effects of wildfire on microbial biomass C and N, and abundance of bacteria and fungi 2 months after a fire in a pine plantation. Soil organic carbon (Corg), total nitrogen (Ntot), and electrical conductivity (EC) increased following the fire. In terms of microbial abundance, the overall results showed that burned forest soils had the most bacteria and fungi. Microbial biomass C and N from soil in the burned forest were not significantly different from their unburned forest counterparts. However, microbial indices indicated that fire affects soil microbial community structure by modifying the environmental conditions. The results also suggested that low-intensity fire promotes microorganism functional activity and improves the chemical characteristics of soils under humid climatic conditions.  相似文献   

4.
Microbial growth and degradation of fluoranthene in amended soil microcosms by the indigenous microbial population and a PAH degrading mixed culture inoculum were characterised. Percentages of fluoranthene disappearance ranged from 14.4 % in sterilised uninoculated soil microcosms to 52.1 % in unsterilized inoculated microcosms. Inoculated soils had initial microbial counts approximately one order of magnitude higher than the indigenous soil count and exhibited enhanced fluoranthene degradation. Over a nine week incubation period, total viable counts in inoculated non-sterile soil declined to the levels observed for the original indigenous population.  相似文献   

5.
Xu Y H  Sun J  Lin Q  Ma J  Shi Y W  Lou K 《农业工程》2012,32(5):258-264
The aim of the study was to determine effects of a wildfire on soil nutrients and soil microbial functional diversity in short-term time scales. Burned and unburned control soil samples were collected 1 day, and 2, 4, 8, 10, 12 and 15 months after a shrubbery fire in Yumin county of Xinjiang, Northwest China. Nutrients of soil in each sampling time were detected and soil microbial functional diversity was measured by Biolog Eco plates. Results of the study showed that soil nutrients were significantly affected by fire. Soil pH increased immediately after the wildfire and was higher than that of unburned soil during 15 months post fire. Soil organic matter and total N significantly decreased immediately after the fire and was even lower than control soil at the 15th month post fire. Soil available P level increased sharply during the 4th month after the fire, and later reached to the maximum value with eight times higher than that of unburned soil. Soil available N and available K were more than the control site in 2 months after the fire, then decreased, but available N began to increase, when vegetations restored 1 year after the fire. Soil microbial activity and functional diversity recovered gradually after fire. The average well color development (AWCD) and functional diversity indices (Shannon index, Simpson index, and McIntosh index) decreased significantly 1 day after the fire, but then increased and were similar to that of undisturbed soil 15 months after the fire, when plant started to regenerate in burned area. The changes in soil nutrients after the fire affected soil microbial activity and functional diversity. Correlation analysis revealed that AWCD was negatively correlated with soil pH and positively correlated with soil total N and available N, Shannon and Simpson index had positive significantly correlation with soil total N and McIntosh index had positive significantly correlation with available N. Result of principal component analysis based on the data of carbons metabolism showed that microbial catabolic profiles of burned soils of each sampling time after the wildfire were different and all were distinct from those of unburned soils, which might suggest that microbial community structure of fire-impacted area changed dynamically on monthly scale and was distinct from that of the control site in 15 months after fire, although microbial activity or richness showed similar to pre-fire level at the 15th month post-fire.  相似文献   

6.
The effects of drought on soil dynamics after fire are poorly known, particularly its long‐term (i.e., years) legacy effects once rainfall returns to normal. Understanding this is particularly important for nutrient‐poor soils in semi‐arid regions affected by fire, in which rainfall is projected to decrease with climate change. Here, we studied the effects of post‐fire drought and its legacy on soil microbial community structure and functionality in a CistusErica shrubland (Spain). Rainfall total and patterns were experimentally modified to produce an unburned control (natural rainfall) and four burned treatments: control (natural rainfall), historical control (long‐term average rainfall), moderate drought (percentile 8 historical rainfall, 5 months of drought per year), and severe drought (percentile 2, 7 months of drought). Soil nutrients and microbial community composition (ester‐linked fatty acid approach) and functionality (enzyme activities and C mineralization rate) were monitored during the first 4 years after fire under rainfall treatments, plus two additional ones without them (six post‐fire years). We found that the recovery of burned soils was lower under drought. Post‐fire drought increased nitrate in the short term and reduced available phosphorus, exchangeable potassium, soil organic matter, enzyme activities, and carbon mineralization rate. Moreover, drought decreased soil total microbial biomass and fungi, with bacteria becoming relatively more abundant. Two years after discontinuing the drought treatments, the drought legacy was significant for available phosphorus and enzyme activities. Although microbial biomass did not show any drought legacy effect, the proportion of fungi and bacteria (mainly gram‐positive) did, being lower and higher, respectively, in former drought‐treated plots. We show that drought has an important impact on soil processes, and that some of its effects persist for at least 2 years after the drought ended. Therefore, drought and its legacy effects can be important for modeling biogeochemical processes in burned soils under future climate change.  相似文献   

7.
This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH3-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.  相似文献   

8.
彭瑶  曹凤艳  曲来叶 《植物研究》2017,37(4):549-555
通过选取大兴安岭岭北部的兴安落叶松林重度、轻度火烧迹地以及为过火样地,运用磷脂脂肪酸分析方法(PLFAs),研究了火烧对0~5和5~10 cm土层的土壤理化性质和土壤微生物群落的结构特征的影响,并探讨了火烧当年土壤微生物群落生物量和群落结构的变化规律与影响因素。研究结果表明:0~5和5~10 cm土层的土壤pH、全钾、有效磷、黏砂比等土壤理化指标受到了火烧的显著性影响;不同火烧程度对微生物类群的生物量有影响,但不显著;重度火烧迹地的土壤微生物的群落结构指标革兰氏阳性菌/革兰氏阴性菌(G+/G-)以及真菌/细菌(F/B)与轻度和未过火样地具有显著差异。RDA分析指出,G+/G-受土壤含水量影响最大,F/B受pH影响最大。说明在火烧迹地的当年,土壤水分和pH是影响土壤微生物群落结构的最重要因素。  相似文献   

9.
Severe wildfire may cause long-term changes in the soil-atmosphere exchange of carbon dioxide and methane, two gases known to force atmospheric warming. We examined the effect of a severe wildfire 10?years after burning to determine decadal-scale changes in soil gas fluxes following fire, and explored mechanisms responsible for these dynamics. We compared soil carbon dioxide efflux, methane uptake, soil temperature, soil water content, soil O horizon mass, fine root mass, and microbial biomass between a burned site and an unburned site that had similar stand conditions to the burned site before the fire. Compared to the unburned site, soil carbon dioxide efflux was 40% lower and methane uptake was 49% higher at the burned site over the 427-day measurement period. Soil O horizon mass, microbial biomass, fine root mass, and surface soil water content were lower at the burned site than the unburned site, but soil temperature was higher. A regression model showed soil carbon dioxide efflux was more sensitive to changes in soil temperature at the burned site than the unburned site. The relative importance of methane uptake to carbon dioxide efflux was higher at the burned site than the unburned site, but methane uptake compensated for only 1.5% of the warming potential of soil carbon dioxide efflux at the burned site. Our results suggest there was less carbon available at the burned site for respiration by plants and microbes, and the loss of the soil O horizon increased methane uptake in soil at the burned site.  相似文献   

10.
Wildfires are a typical event in many Australian plant communities. Vesicular-arbuscular mycorrhizal (VAM) fungi are important for plant growth in many communities, especially on infertile soils, yet few studies have examined the impact of wildfire on the infectivity of VAM fungi. This study took the opportunity offered by a wildfire to compare the infectivity and abundance of spores of VAM fungi from: (i) pre-fire and post-fire sites, and (ii) post-fire burned and unburned sites. Pre-fire samples had been taken in May 1990 and mid-December 1990 as part of another study. A wildfire of moderate intensity burned the site in late December 1990. Post-fire samples were taken from burned and unburned areas immediately after the fire and 6 months after the fire. A bioassay was used to examine the infectivity of VAM fungi. The post-fire soil produced significantly less VAM infection than the pre-fire soil. However, no difference was observed between colonization of plant roots by VAM fungi in soil taken from post-fire burned and adjacent unburned plots. Soil samples taken 6 months after the fire produced significantly more VAM than corresponding soil samples taken one year earlier. Spore numbers were quantified be wet-sieving and decanting of 100-g, air-dried soil subsamples and microscopic examination. For the most abundant spore type, spore numbers were significantly lower immediately post-fire. However, no significant difference in spore numbers was observed between post-fire burned and unburned plots. Six months after the fire, spore numbers were the same as the corresponding samples taken 1 year earlier. All plants appearing in the burned site resprouted from underground organs. All post-fire plant species recorded to have mycorrhizal associations before the fire had the same associations after the fire, except for species of Conospermum (Proteaceae), which lacked internal vesicles in cortical cells in the post-fire samples.  相似文献   

11.
The growth stimulation of wild plants by several bacterial species showing plant growth-promoting capabilities was examined in a barren lakeside area at Lake Paro, Korea. Microbial numbers and activities in the field soil were monitored for 73 days after inoculation of the bacteria. The acridine orange direct counts for the total soil bacterial populations ranged between 2.0-2.3x10(9) cells/g soil and 1.4-1.8x10(9) cells/g soil in the inoculated and uninoculated soils, respectively. The numbers of Pseudomonas spp., which is known as a typical plant growth-promoting rhizobacteria, and the total microbial activity were higher in the inoculated soil compared to those in the uninoculated soil. The average shoot and root lengths of the wild plants grown in the inoculated soil were 17.3 cm and 12.4 cm, respectively, and longer than those of 11.4 cm and 8.5 cm in the uninoculated soil. The total dry weight of the harvested wild plants was also higher in the inoculated soil (42.0 g) compared to the uninoculated soil (35.1 g). The plant growth-promoting capabilities of the inoculated bacteria may be used for the rapid revegetation of barren or disturbed land, and as biofertilizer in agriculture.  相似文献   

12.
The influence of discontinuous permafrost on ground‐fuel storage, combustion losses, and postfire soil climates was examined after a wildfire near Delta Junction, AK in July 1999. At this site, we sampled soils from a four‐way site comparison of burning (burned and unburned) and permafrost (permafrost and nonpermafrost). Soil organic layers (which comprise ground‐fuel storage) were thicker in permafrost than nonpermafrost soils both in burned and unburned sites. While we expected fire severity to be greater in the drier site (without permafrost), combustion losses were not significantly different between the two burned sites. Overall, permafrost and burning had significant effects on physical soil variables. Most notably, unburned permafrost sites with the thickest organic mats consistently had the coldest temperatures and wettest mineral soil, while soils in the burned nonpermafrost sites were warmer and drier than the other soils. For every centimeter of organic mat thickness, temperature at 5 cm depth was about 0.5°C cooler during summer months. We propose that organic soil layers determine to a large extent the physical and thermal setting for variations in vegetation, decomposition, and carbon balance across these landscapes. In particular, the deep organic layers maintain the legacies of thermal and nutrient cycling governed by fire and revegetation. We further propose that the thermal influence of deep organic soil layers may be an underlying mechanism responsible for large regional patterns of burning and regrowth, detected in fractal analyses of burn frequency and area. Thus, fractal geometry can potentially be used to analyze changes in state of these fire prone systems.  相似文献   

13.
Effects of fire on vesicular-arbuscular mycorrhizal fungi were tested using microcosms constructed from soil, litter, and duff collected beneath canopies of pinyon pine, Utah juniper, and in the open space (interspace). Burning was conducted over wet and dry soils. Soil temperatures were monitored continuously throughout the microcosms during burning. Plants grown in soils burned when dry had a lower VAM colonization than soils burned when wet. Juniper soils demonstrated the greatest reduction, over 95%, compared to their respective controls. Plants grown in interspace soils burned when wet were least affected. There was a positive correlation (r2=0.90) between the decrease in VAM colonization and the soil temperature as a result of the fire. Temperature effects, and associated reductions in VAM, were related to amount of litter burned in each microcosm and the moisture content of the soils.  相似文献   

14.
The fire-related variations in culturable microfungal communities in the soil of the Mount Carmel forest, Israel, were examined by comparing the communities from burned and adjacent unburned soil plots under pine and oak trees – collected 6, 18, and 26 months after the fire. A total of 82 species representing 44 genera were isolated using the soil dilution plate method. The results showed that the fire had strongly influenced the composition and structure of microfungal communities. The fire remarkably changed physical and chemical properties of the environment, decreasing water holding capacity, organic matter and total nitrogen content in the burned soil. These changes supported abundant development of fast-growing mycoparasitic species (Clonostachys rosea and Trichoderma spp.) and caused significant decrease in species richness. The variations in community composition were much more expressed in the burned soils under oak vegetation as compared with the pine trees. In the oak burned soils, the contribution of the “mesic” component, Penicillium spp., was markedly lower, whereas the contribution of the “xeric”, stress-selected component, melanin-containing species, was higher than in the unburned communities. Such variations can be also considered as a community response to the fire-related decrease in water and nutrient content in the burned soils.  相似文献   

15.
The effects of wildfire on the dynamics of pH, organic C, total and mineral N and in vitro C and N mineralization were investigated in the soil under oak (Quercus suber L.) trees. Soil samples were taken from 5 to 21 months subsequent to the fire. The pH increased sharply in the burned surface soil (0–5 cm) taken 5 months after the fire and dropped only by half a unit over 14 to 21 months. However, at greater depth (5–15 cm), the burned soil was more acidic than the adjacent unburned soil up to 9 months following the fire, and thereafter its pH rose only slightly above that of the unburned soil. There were sharp rises in the concentration of organic C, total and mineral N in addition toin vitro mineralization activities in the burned surface soil collected 5 months after the fire; these dropped off in the subsequent samples approaching or falling below the values obtained in the unburned surface soil after 21 months. At a depth of 5–15 cm only slight or no increases over unburned soil were evident.  相似文献   

16.
大兴安岭火烧迹地恢复初期土壤微生物群落特征   总被引:3,自引:2,他引:1  
对大兴安岭兴安落叶松2003年重度和中度火烧迹地以及未过火样地的土壤微生物群落进行了考察,旨在揭示火烧迹地恢复初期土壤微生物群落变化特征。研究结果表明火烧迹地土壤养分(全氮、全碳、土壤有机质、有效氮)和土壤水分与未过火对照样地存在显著差异;火烧迹地土壤微生物量碳氮、微生物代谢活性以及碳源利用能力均显著高于对照样地;但火烧迹地与对照样地土壤微生物群落结构指标土壤微生物量碳氮比(MBC/MBN)以及多样性指数没有显著差异。相关分析结果表明:土壤微生物量、代谢活性和碳源利用能力与土壤养分指标(全碳、全氮、速效氮、有机质)和土壤水分含量有显著相关性。主成分分析的结果表明火烧与否是火烧样地与对照样地土壤微生物对碳源利用能力差异的原因。所有样地土壤微生物群落真菌比例较高,可能与该地区土壤酸碱度有关(pH=4.12—4.68)。经过6a的恢复,重度和中度火烧迹地的土壤养分和水分、土壤微生物群落的生长、代谢、以及群落多样性仍存在差异,但均不显著,表明此时火烧程度对土壤微生物群落的影响已很微弱。  相似文献   

17.
Antagonistic bacteria represent promising biocontrol agents for improving forest production in seedling nurseries or forest soils. The fate of an introduced mer/luc-tagged antagonistic Pseudomonas fluorescens 31K3 was monitored in the rhizosphere of silver birch (Betula pendula) seedlings grown in microcosms containing forest humus or nursery peat. The inoculated strain (10(8) cfu g(-1) soil) was unable to establish in significant numbers in either soil type and turned nonculturable in humus. Detection in both soils was possible only via luminescence of enrichment cultures 80 days post-inoculation. Despite low P. fluorescens survival, inoculation had a positive effect on seedling growth. Limited impact of inoculation on the indigenous microbial communities was identified following analyses of respiration and denitrification potential, community-level physiological profiles and molecular fingerprinting of fungi and eubacteria, and Pseudomonas community structures. The minor changes observed in the indigenous microbial communities, including mycorrhiza development, were not consistent between humus and peat growth substrates. It was concluded that the rhizosphere-related microbial communities developed in both of these highly organic soil systems are highly buffered against introduction of foreign bacteria.  相似文献   

18.
Fire has been an important management tool in the pastoral use of New Zealand tussock grasslands. The effects of a farm-scale pastoral fire and subsequent grazing by sheep on soil biochemical properties in tussock grasslands dominated by the narrow-leaved snow tussock (Chionochloa rigida ssp. rigida) were investigated, 1.5 and 2.5 years after the fire event, in 0-2 cm depth mineral soil at a site at 975 m altitude in Central Otago, New Zealand. The nitrogen (N) and phosphorus (P) concentrations of C. rigida leaves were also measured. Comparisons were made with soil and tussock leaves from an adjacent unburned site. At both samplings, values of total soil organic carbon (C), extractable C, microbial biomass C, and basal respiratory activity were, on average, 14%, 18%, 23%, and 40%, respectively, lower at the burned than at the unburned site. In contrast, microbial N values were roughly similar at both sites, while microbial P values were 42% higher at the burned site after 1.5 years. Phosphomonoesterase and phosphodiesterase activities were then also similar at both sites, whereas invertase activity was higher at the burned site. The greater availability of N and P at the burned site was confirmed by the higher concentrations of N and P in C. rigida leaves sampled 2 years after the fire. Ratios of microbial C:microbial N and microbial C:microbial P were significantly lower at both samplings at the burned site, and emphasise the importance of the soil microbial biomass in conserving N and P after pastoral burning in a grassland ecosystem.  相似文献   

19.
Compost has been widely used in order to promote vegetation growth in post-harvested and burned soils. The effects on soil microorganisms were scarcely known, so we performed the microbial analyses in a wildfire area of the Taebaek Mountains, Korea, during field surveys from May to September 2007. Using culture-dependent and -independent methods, we found that compost used in burned soils influenced a greater impact on soil fungi than bacteria. Compost-treated soils contained higher levels of antifungal strains in the genera Bacillus and Burkholderia than non-treated soils. When the antifungal activity of Burkholderia sp. strain O1a_RA002, which had been isolated from a compost-treated soil, was tested for the growth inhibition of bacteria and fungi isolated from burned soils, the membrane-filtered culture supernatant inhibited 19/37 fungal strains including soil fungi, Eupenicillium spp. and Devriesia americana; plant pathogens, Polyschema larviformis and Massaria platani; an animal pathogen, Mortierella verticillata; and an unidentified Ascomycota. However, this organism only inhibited 11/151 bacterial strains tested. These patterns were compatible with the culture-independent DGGE results, suggesting that the compost used in burned soils had a greater impact on soil fungi than bacteria through the promotion of the growth of antifungal bacteria. Our findings indicate that compost used in burned soils is effective in restoring soil conditions to a state closer to those of nearby unburned forest soils at the early stage of secondary succession.  相似文献   

20.
The purpose of this study was to develop a fungal bioremediation method that could be used for soils heavily contaminated with persistent organic compounds, such as polyaromatic hydrocarbons (PAHs). Sawmill soil, contaminated with PAHs, was mixed with composted green waste (1:1) and incubated with or without fungal inoculum. The treatments were performed at the laboratory and field scales. In the laboratory scale treatment (starting concentration 3500 mg kg−1, sum of 16 PAH) the high molecular weight PAHs were degraded significantly more in the fungal-inoculated microcosms than in the uninoculated ones. In the microcosms inoculated with Phanerochaete velutina, 96% of 4-ring PAHs and 39% of 5- and 6-ring PAHs were removed in three months. In the uninoculated microcosms, 55% of 4-ring PAHs and only 7% of 5- and 6-ring PAHs were degraded. However, during the field scale (2 t) experiment at lower starting concentration (1400 mg kg−1, sum of 16 PAH) the % degradation was similar in both the P. velutina-inoculated and the uninoculated treatments: 94% of the 16 PAHs were degraded in three months. In the field scale experiment the copy number of gram-positive bacteria PAH-ring hydroxylating dioxygenase genes was found to increase 1000 fold, indicating that bacterial PAH degradation also played an important role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号