首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aggregates are the biologically active units of endotoxin   总被引:7,自引:0,他引:7  
For the elucidation of the very early steps of immune cell activation by endotoxins (lipopolysaccharide, LPS) leading to the production and release of proinflammatory cytokines the question concerning the biologically active unit of endotoxins has to be addressed: are monomeric endotoxin molecules able to activate cells or is the active unit represented by larger endotoxin aggregates? This question has been answered controversially in the past. Inspired by the observation that natural isolates of lipid A, the lipid moiety of LPS harboring its endotoxic principle, from Escherichia coli express a higher endotoxic activity than the same amounts of the synthetic E. coli-like hexaacylated lipid A (compound 506), we looked closer at the chemical composition of natural isolates. We found in these isolates that the largest fraction was hexaacylated, but also significant amounts of penta- and tetraacylated molecules were present that, when administered to human mononuclear cells, may antagonize the induction of cytokines by biologically active hexaacylated endotoxins. We prepared separate aggregates of either compound 506 or 406 (tetraacylated precursor IVa), mixed at different molar ratios, and mixed aggregates containing both compounds in the same ratios. Surprisingly, the latter mixtures showed higher endotoxic activity than that of the pure compound 506 up to an admixture of 20% of compound 406. Similar results were obtained when using various phospholipids instead of compound 406. These observations can only be understood by assuming that the active unit of endotoxins is the aggregate. We further confirmed this result by preparing monomeric lipid A and LPS by a dialysis procedure and found that, at the same concentrations, only the aggregates were biologically active, whereas the monomers showed no activity.  相似文献   

2.
The inhibition of LPS-induced cell activation by specific antagonists is a long-known phenomenon; however, the underlying mechanisms are still poorly understood. It is commonly accepted that the membrane-bound receptors mCD14 and TLR4 are involved in the activation of mononuclear cells by LPS and that activation may be enhanced by soluble LPS-binding protein (LBP). Hexaacylated Escherichia coli lipid A has the highest cytokine-inducing capacity, whereas lipid A with four fatty acids (precursor IVa, synthetic compound 406) is endotoxically inactive, but expresses antagonistic activity against active LPS. Seeking to unravel basic molecular principles underlying antagonism, we investigated phospholipids with structural similarity to compound 406 with respect to their antagonistic activity. The tetraacylated diphosphatidylglycerol (cardiolipin, CL) exhibits high structural similarity to 406, and our experiments showed that CL strongly inhibited LPS-induced TNF-alpha release when added to the cells before stimulation or as a CL/LPS mixture. Also negatively charged and to a lesser degree zwitterionic diacyl phospholipids inhibited LPS-induced cytokine production. Using Abs against LBP, we could show that the activation of cells by LPS was dependent on the presence of cell-associated LBP, thus making LBP a possible target for the antagonistic action of phospholipids. In experiments investigating the LBP-mediated intercalation of LPS and phospholipids into phospholipid liposomes mimicking the macrophage membrane, we could show that preincubation of soluble LBP with phospholipids leads to a significant reduction of LPS intercalation. In summary, we show that LBP is a target for the inhibitory function of phospholipids.  相似文献   

3.
For elucidation of the structural and conformational requirements on the endotoxic and antagonistic activity of lipid A derivatives, we designed and synthesized lipid A analogues containing acidic amino acid residues in place of the non-reducing end phosphorylated glucosamine. Definite switching of the endotoxic or antagonistic activity was observed depending on the difference of the acidic groups (phosphoric acid or carboxylic acid) in the lipid A analogues.  相似文献   

4.
Biological activities of two groups of synthesized lipid A analogs, the counterpart of biosynthetic precursor, Lehmann's Ia type, 406, and E. coli lipid A type, 506, as well as their non-phosphorylated, and mono-phosphorylated analogs were investigated. The activities employed included four bone marrow cell reactions in mice, mice skin reaction, leukocytes migration in rabbits' cornea, and hemagglutination. Compound 406 and 506 elicited bone marrow reactions in mice and hemagglutination of mouse RBC, although 406 failed to elicit hemorrhage and necrosis also in mice skin. Compound 406 did not elicit corneal reaction in rabbits. The results suggest that for elicitation of this reaction and mice skin reaction, acyloxyacyl structure is required. Cytotoxicity and thromboplastin production of four bone marrow reactions had been reported by us to be endotoxic reactions, since these had not been elicited by peptidoglycan of Lactobacillus and Staphylococcus (1981) and 300 series synthesized analogs (1984) which did not have endotoxic structures. From these results, it seems that these two marrow reactions and hemagglutination require, as does the limulus test, the lipid A part structure as is present in 406.  相似文献   

5.
Lipopolysaccharides (LPS, endotoxin) represent a major virulence factor of Gram-negative bacteria, which can cause septic shock in mammals, including man. The lipid anchor of LPS to the bacterial outer membrane, lipid A, exhibits a peculiar chemical structure, harbours the 'endotoxic principle' of LPS and is also responsible for the expression of pathophysiological effects. Chemically modified lipid A can be endotoxically inactive, but may express strong antagonistic activity against endotoxically active LPS. By applying orientation measurements with attenuated total reflectance (ATR) infrared spectroscopy on hydrated lipid A samples, we show here that these different biological activities are directly correlated to the intrinsic conformation of lipid A. Bisphosphoryl-hexaacyl lipid A molecules with an asymmetric (4/2) distribution of the acyl chains linked to the diglucosamine backbone have a large tilt angle (> 45 degrees ) of the diglucosamine backbone with respect to the membrane surface, a conical molecular shape (larger cross-section of the hydrophobic than the hydrophilic moiety), and are endotoxically highly active. Monophosphoryl hexaacyl lipid A has a smaller tilt angle, and the conical shape is less expressed in favour of a more cylindrical shape. This correlates with decreasing endotoxic activity. Penta- and tetraacyl lipid A or hexaacyl lipid A with a symmetric acyl chain distribution (3/3) have a small tilt angle (< 25 degrees ) and a cylindrical shape and are endotoxically inactive, but may be antagonistic.  相似文献   

6.
A synthetic lipid A of Porphyromonas gingivalis strain 381 (compound PG-381), which is similar to its natural lipid A, demonstrated no or very low endotoxic activities as compared to Escherichia coli-type synthetic lipid A (compound 506). On the other hand, compound PG-381 had stronger hemagglutinating activities on rabbit erythrocytes than compound 506. Compound PG-381 also induced mitogenic responses in spleen cells from lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice, as well as LPS-responsive C3H/HeN mice. The addition of polymyxin B resulted in the inhibition of mitogenic activities, however, compound 506 did not show these capacities. Additionally, compound PG-381 showed a lower level of activity in inducing cytokine production in peritoneal macrophages and gingival fibroblasts from C3H/HeN mice, but not C3H/HeJ mice, in comparison to compound 506. Thus, this study demonstrates that the chemical synthesis of lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, confirms its low endotoxic potency and immunobiological activity.  相似文献   

7.
Abstract Natural partial structures of lipopolysaccharide (LPS) as well as synthetic analogues and derivatives of lipid A were compared with respect to inhibit the binding of 125I-labelled Re-chemotype LPS to mouse macrophage-like J774.1 cells to induce cytokine-release in J774.1 cells. LPS, synthetic Escherichia coli -type lipid A (compound 506) and tetraacyl percursor Ia (compound 406) inhibited the binding of 125I-LPS to macrophage-like J774.1 cells and induced the release of tumor ncerosis factor α (TNFα) and interleukin 6 (IL-6). Deacylated R-chemotype LPS preparations were completely inactive in inhibiting binding and in inducing cytokine-release. Among tetraacyl compounds, the inhibition-capacity of LPS-binding was in decreasing order: PE-4 ( α -phosphonooxyethyl analogue of 406)>406⪢>404(4′-monophosphoryl partial structure of 406)>405 (1-monophosphoryl partial structure of 406). In the case of hexaccyl preparations, compounds 506, PE-1 (α-phosphonooxyethyl analogue of 506) and PE-2 (differing from PE-1 in having 14:0 at positions 2 and 3 of the reducing GlcN) inhibited LPS-binding and induced cytokine release equally well, whereas preparation PE-3 (differing from PE-2 in containing a β-phosphhonooxyethyl group) showed a substantially lower capacity in binding-inhibition and cytokine-induction. The conclusion is that chemical changes in the hydrophilic lipid A backbone reduce the capacity of lipid A to bind to cells, whereas the number of fatty acids determines the capacity of lipid A to activate cells. These results indicate that the bisphosphorylated hexosamine backbone of lipid A is essential for specific binding of LPS to macrophages and that the acylation pattern plays a critical role for LPS-promoted cell activation, i.e. cytokine induction.  相似文献   

8.
To better understand bilayer property dependency on lipid electrostatics and headgroup size, we use atomistic molecular dynamics simulations to study negatively charged and neutral lipid membranes. We compare the negatively charged phosphatidic acid (PA), which at physiological pH and salt concentration has a negative spontaneous curvature, with the negatively charged phosphatidylglycerol (PG) and neutrally charged phosphatidylcholine (PC), both of which have zero spontaneous curvature. The PA lipids are simulated using two different sets of partial charges for the headgroup and the varied charge distribution between the two PA systems results in significantly different locations for the Na+ ions relative to the water/membrane interface. For one PA system, the Na+ ions are localized around the phosphate group. In the second PA system, the Na+ ions are located near the ester carbonyl atoms, which coincides with the preferred location site for the PG Na+ ions. We find that the Na+ ion location has a larger effect on bilayer fluidity properties than lipid headgroup size, where the Alipid and acyl chain order parameter values are more similar between the PA and PG bilayers that have Na+ ions located near the ester groups than between the two PA bilayers.  相似文献   

9.
Pseudomonas diminuta LPS with a new endotoxic lipid A structure   总被引:5,自引:0,他引:5  
Lipid A that contains mainly 2,3-diamino-2,3-dideoxy-D-glucose, phosphate and fatty acids in the molar ratio 2:1:5-6 was found in Pseudomonas diminuta lipopolysaccharide. The lipid A was considered to have a diamino-sugar disaccharide structure that carries a nonglycosidic phosphomonoester group and amide-bound acyloxyacyl and 3-hydroxy fatty acyl groups. The lipopolysaccharide exhibited endotoxic activities including lethal toxicity, pyrogenicity, local Shwartzman activity, body weight-decreasing toxicity and Limulus activity. The free lipid A was also endotoxic.  相似文献   

10.
Bacterial lipopolysaccharide (LPS) induces the production of various inflammatory cytokines and the inducibility is considered attributable to the glycolipid part of LPS called lipid A. We report an in vitro model in which lipid A is not necessarily a minimal structure for the LPS activity. Vitamin D3-differentiated THP-1 cells, cultured human monocytic leukemia cells, produced a high level of interleukin-6 (IL-6) by stimulating LPS from Escherichia coli O111:B4, but not by stimulating synthetic E. coli-type lipid A (compound 506), E. coli Re mutant LPS (ReLPS), or alkali-treated LPS. The induction by LPS was inhibited by the anti-CD14 antibodies or by the synthetic lipid A precursor (compound 406). An alkali-treated LPS or compound 506 partially inhibited the LPS-induced IL-6 production. These facts suggest that lipid A alone is not sufficient for the IL-6-inducing activity, but the polysaccharide part in LPS contributes or acts as a co-factor for activation of differentiated THP-1 cells.  相似文献   

11.
Structural heterogeneity regarding local Shwartzman activity of lipid A   总被引:2,自引:0,他引:2  
The relation of chemical structure to local Shwartzman activity of lipid A preparations purified by thin-layer chromatography from five bacterial strains was examined. Two lipid A fractions from E. coli F515--Ec-A2 and Ec-A3--exhibited strong activity, similar to that of previous synthetic E. coli-type lipid A (compound 506 or LA-15-PP). The Ec-A3 fraction contained a component that appeared to be structurally identical to compound 506, and the main component of Ec-A2 fraction was structurally similar to compound 506 except that it carried a 3-hydroxytetradecanoyl group at the C-3' position of the backbone in place of a 3-tetradecanoyloxytetradecanoyl group. Free lipid A (12 C) and purified lipid A fractions, Ec-A2 (12 C) and Ec-A3 (12 C), respectively, obtained from bacteria grown at 12 C, exhibited activity comparable to Ec-A2 or Ec-A3. In these preparations, a large part of the 3-dodecanoyloxytetradecanoyl group might be replaced by 3-hexadecenoyloxytetradecanoyl group. Salmonella minnesota R595 free lipid A also contained at least two active lipid A components as seen in E. coli lipid A, but the third component corresponding to the synthetic Salmonella-type lipid A (compound 516 or LA-16-PP) exhibited low activity. A lipid A fraction, Cv-A4 from Chromobacterium violaceum IFO 12614, which was proposed to have two acyloxyacyl groups at the C-2 and C-2' positions with other acyl groups, exhibited weaker activity than the free lipid A or LPS. The purified lipid A fractions from Pseudomonas diminuta JCM 2788 and Pseudomonas vesicularis JCM 1477 contained an unusual backbone with 2,3-diamino-2,3-dideoxy-D-glucose disaccharide phosphomonoester, and these lipid A (Pd-A3 and Pv-A3) exhibited strong activity comparable to the E. coli lipid A. Thus, the present results show that the local Shwartzman reaction can be expressed by partly different lipid A structures in both hydrophilic backbone and fatty acyl residues; when they have the same backbone the potency varies markedly depending on the structure of the acyl residues.  相似文献   

12.
F. tularensis is a Gram-negative coccobacillus that causes tularemia. Its LPS has nominal biological activity. Currently, there is controversy regarding the structure of the lipid A obtained from F. tularensis live vaccine strain (LVS). Therefore, to resolve this controversy, the purification and structural identification of this LPS was crucial. To achieve this, LPS from F. tularensis LVS was acid hydrolyzed to obtain crude lipid A that was methylated and purified by HPLC and the fractions were analyzed by MALDI-TOF MS. The structure of the major lipid A species was composed of a glucosamine disaccharide backbone substituted with four fatty acyl groups and a phosphate (1-position) with a molecular mass of 1505. The major lipid A component contained 18:0[3-O(16:0)] in the distal subunit and two 18:0(3-OH) fatty acyl chains at the 2- or 3-positions of the reducing subunit. Additional variations in the lipid A species include: heterogeneity in fatty acyl groups, a phosphate or a phosphoryl galactosamine at the 1-position, and a hexose at the 4' or 6' position, some of which have not been previously described for F. tularensis LVS. This analysis revealed that lipid A from F. tularensis LVS is far more complex than originally believed.  相似文献   

13.
Bdellovibrio bacteriovorus are predatory bacteria that penetrate Gram-negative bacteria and grow intraperiplasmically at the expense of the prey. It was suggested that B. bacteriovorus partially degrade and reutilize lipopolysaccharide (LPS) of the host, thus synthesizing an outer membrane containing structural elements of the prey. According to this hypothesis a host-independent mutant should possess a chemically different LPS. Therefore, the lipopolysaccharides of B. bacteriovorus HD100 and its host-independent derivative B. bacteriovorus HI100 were isolated and characterized by SDS-polyacrylamide gel electrophoresis, immunoblotting, and mass spectrometry. LPS of both strains were identified as smooth-form LPS with different repeating units. The lipid As were isolated after mild acid hydrolysis and their structures were determined by chemical analysis, by mass spectrometric methods, and by NMR spectroscopy. Both lipid As were characterized by an unusual chemical structure, consisting of a beta-(1-->6)-linked 2,3-diamino-2,3-dideoxy-d-glucopyranose disaccharide carrying six fatty acids that were all hydroxylated. Instead of phosphate groups substituting position O-1 of the reducing and O-4' of the nonreducing end alpha-d-mannopyranose residues were found in these lipid As. Thus, they represent the first lipid As completely missing negatively charged groups. A reduced endotoxic activity as determined by cytokine induction from human macrophages was shown for this novel structure. Only minor differences with respect to fatty acids were detected between the lipid As of the host-dependent wild type strain HD100 and for its host-independent derivative HI100. From the results of the detailed analysis it can be concluded that the wild type strain HD100 synthesizes an innate LPS.  相似文献   

14.
The synthesis of lipid A-type pyrancarboxylic acid derivatives, which have a carboxylic acid group in the anomeric position of the reducing part of the disaccharide instead of the phosphate group in lipid A, is described. One of the compounds thus synthesized, which has an acyl substitution pattern similar to that of Escherichia coli lipid A, showed lipopolysaccharide (LPS)-agonistic activity. The other, which contains four lipid chains in the molecule, exhibited strong LPS-antagonistic activity toward human monoblastic U937 cells.  相似文献   

15.
Lipopolysaccharide (LPS) activates innate immune responses through TLR4·MD-2. LPS binds to the MD-2 hydrophobic pocket and bridges the dimerization of two TLR4·MD-2 complexes to activate intracellular signaling. However, exactly how lipid A, the endotoxic moiety of LPS, activates myeloid lineage cells remains unknown. Lipid IVA, a tetra-acylated lipid A precursor, has been used widely as a model for lipid A activation. For unknown reasons, lipid IVA activates proinflammatory responses in rodent cells but inhibits the activity of LPS in human cells. Using stable TLR4-expressing cell lines and purified monomeric MD-2, as well as MD-2-deficient bone marrow-derived macrophages, we found that both mouse TLR4 and mouse MD-2 are required for lipid IVA activation. Computational studies suggested that unique ionic interactions exist between lipid IVA and TLR4 at the dimerization interface in the mouse complex only. The negatively charged 4′-phosphate on lipid IVA interacts with two positively charged residues on the opposing mouse, but not human, TLR4 (Lys367 and Arg434) at the dimerization interface. When replaced with their negatively charged human counterparts Glu369 and Gln436, mouse TLR4 was no longer responsive to lipid IVA. In contrast, human TLR4 gained lipid IVA responsiveness when ionic interactions were enabled by charge reversal at the dimerization interface, defining the basis of lipid IVA species specificity. Thus, using lipid IVA as a selective lipid A agonist, we successfully decoupled and coupled two sequential events required for intracellular signaling: receptor engagement and dimerization, underscoring the functional role of ionic interactions in receptor activation.  相似文献   

16.
Modification of a lipid A moiety in Gram-negative bacterial LPS to a less acylated form is thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. The contribution of less-acylated lipid A to interactions of whole bacterial cells with host cells (especially in humans) remains unclear. Mutant strains of Salmonella enterica serovar Typhimurium with fewer acylated groups were generated. The major lipid A form in wild-type (WT) and the mutant KCS237 strain is hexa-acylated; in mutant strains KCS311 and KCS324 it is penta-acylated; and in KCS369 it is tetra-acylated. WT and KCS237 formalin-killed and live bacteria, as well as their LPS, strongly stimulated production of pro-inflammatory cytokines in human U937 cells; this stimulation was suppressed by TLR4 suppressors. LPS of other mutants produced no agonistic activity, but strong antagonistic activity, while their formalin-killed and live bacteria preparations had weak agonistic and no antagonistic activity. Moreover, these less-acylated mutants had increased resistance to phagocytosis by U937 cells. Our results indicate that a decrease of one acyl group (from six to five) is enough to allow Salmonella to evade human innate immunity and that the antagonistic activity of less-acylated lipid A is not utilized for this evasion.  相似文献   

17.
The protein-bound polysaccharide isolated from basidiomycetes (PSK) is a biological response modifier capable of exhibiting various biological activities, such as antitumor and antimicrobial effects. In the present study, we found that PSK suppressed interleukin (IL)-6 production in murine peritoneal macrophages stimulated with endotoxic lipopolysaccharide (LPS) and its synthetic lipid A (compound 506). Nitric oxide production and p38 mitogen-associated protein kinase phosphorylation induced in a murine macrophage cell line, J774-A1, by LPS and compound 506 were also inhibited by PSK. Further, PSK distinctly suppressed nuclear factor-kappaB activation in Ba/F3 cells expressing mouse Toll-like receptor 4 and MD-2, following stimulation with LPS and compound 506, however, not with Taxol. These PSK-induced inhibitory activities were caused by inhibition of the physical associations of LPS with LPS-binding protein (LBP) and CD14. PSK also protected mice from LPS-induced lethality, presumably by down-regulating IL-6 and tumor necrosis factor-alpha concentrations in serum. These findings indicate that PSK, which also has an ability to regulate LBP/CD14 functions, may be useful for clinical control of endotoxic sepsis.  相似文献   

18.
A conjugation method for coupling probes bearing hydrazine or primary amino groups to a lipopolysaccharide (LPS) is described. LPS is modified through the hydroxyl groups present in its O-antigen moiety by activation with cyanogen bromide in aqueous acetone using triethylamine to enhance the electrophilicity of CNBr. The method yields conjugates with good labeling ratios, preserving the endotoxic activity of the lipid A moiety, which in blood exerts pleiotropic effects on many tissues and organs, resulting in multiple-organ damage, circulatory collapse, and death. Conjugation of smooth-form LPS from Salmonella enterica sv. Minnesota to dansyl hydrazine yielded a labeling ratio of 330 nmol dansyl/mg LPS, with nearly no loss of the original endotoxic activity. In the case of horseradish peroxidase, in which a spacer was introduced, the ratio was 28 nmol HRP/mg of LPS, preserving 65% of the original endotoxic activity. This work shows that under these conditions of CNBr activation, the labeling process has practically no effect on the endotoxic behavior of LPS. The method can be used effectively for the conjugation of LPS to probes bearing primary amino, hydrazine, or hydrazide functional groups.  相似文献   

19.
The acyl chain packing of various endotoxins and phospholipids was monitored via the main wide-angle reflection between 0.410 and 0.460 nm by wide-angle X-ray scattering (WAXS) and via the absorption band of the symmetric stretching vibration of the methylene groups v(s)(CH(2)) around 2849 to 2853 cm(-1) by Fourier-transform infrared spectroscopy. The lipids investigated included various rough mutant (R) and smooth form (S) lipopolysaccharides (LPS) differing in the length of the sugar portion, lipid A, the "endotoxic principle" of LPS, and various saturated and unsaturated phospholipids with different head groups under a near physiological (>/=85%) water content. The packing density of the saturated endotoxin acyl chains is lower than those of saturated phospholipids but similar to those of monounsaturated phospholipids, each in the gel phase. The hydrophobic moiety of endotoxins thus exhibits significant conformational disorder already in the gel phase. The acyl chain packing of the endotoxins decreases with increasing length of the sugar chain lengths, which seems to be relevant to the observed differences in biological activity. For Re-LPS with different counterions (salt forms), in the presence of externally added cations or at reduced water content (50%), no change of the acyl chain packing density is deduced in the X-ray data, although the FT-IR data indicate its increase. The position of the v(s)(CH(2)) vibration is, thus, only a relative measure of lipid order, in particular when lipids with different head groups and in the presence of external agents are compared.  相似文献   

20.
Lipopolysaccharides (LPS) are unique cell wall components of gram-negative bacteria. They represent amphiphilic biopolymeric compounds combining in a single molecule hydrophilic (O-specific chains, core oligosaccharide, etc.) and hydrophobic (lipid A) entities. LPS play a crucial role in various interactions between micro- and macroorganisms and display a broad range of biological activities including toxic activity and ability to activate immune cells. Biological activities of LPS are based on their ability to bind with high affinity to mammalian proteins, e.g., lipoproteins, bactericidal permeability-increasing proteins, lysozyme, etc., and thus to neutralize toxic effects of endotoxins. LPS are specific targets for antimicrobial polycationic compounds used in the therapy of bacterial infections. Studies of mechanisms of toxic effects of LPS culminated in the development of novel approaches to LPS neutralization. One of them is based on the use of compounds able to neutralize LPS toxicity at the expense of formation of macromolecular complexes with them. This approach is highly specific and has no effect on functional activity of antipathogenic defense mechanisms of the host. Interaction of LPS with various classes of cationic amphiphilic molecules including proteins, peptides, and polyamines was the subject of intensive studies in the past decade. Binding of cationic polymers is provided by electrostatic interactions between LPS and negatively charged phosphate and carboxylic groups of LPS localized in lipid A core. The present study is an overview of recently published data on different mechanisms of interactions of LPS with soluble proteins and polycations and modification of physiological activity of LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号