首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脂肪细胞对胰岛β细胞功能的内分泌调节作用   总被引:2,自引:0,他引:2  
Zhao YF  Chen C 《生理学报》2007,59(3):247-252
脂肪因子包括脂肪细胞分泌的多种活性因子,它们通过内分泌方式调节胰岛β细胞的胰岛素分泌、基因表达以及细胞凋亡等多方面的功能。本文提出脂肪因子影响胰岛β细胞功能主要通过三条相互联系的途径而实现。第一是调节β细胞内葡萄糖和脂肪的代谢;第二是影响β细胞离子通道的活性;第三是改变β细胞本身的胰岛素敏感性。脂肪细胞的内分泌功能是一个动态过程,在不同的代谢状态下,各脂肪因子的分泌发生不同变化。从正常代谢状态发展到肥胖以及2型糖尿病的过程中,脂肪因子参与了胰岛β细胞功能障碍的发生与发展。  相似文献   

2.
In rats, poor fetal growth due to maternal food restriction during pregnancy is associated with decreased beta-cell mass at birth and glucose intolerance in adulthood. Overexposure to glucocorticoids in utero can induce intrauterine growth retardation in humans and animals and subsequent glucose intolerance in rodents. The aims of this study were to investigate whether glucocorticoid overexposure mediates the effect of undernutrition on beta-cell mass and to study their potential role in normally nourished rats. Undernutrition significantly increased maternal and fetal corticosterone levels. Twenty-one-day-old fetuses with undernutrition showed growth retardation and decreased pancreatic insulin content; adrenalectomy and subcutaneous corticosterone implants in their dams prevented the maternal corticosterone increase and restored fetal beta-cell mass. In fetuses with normal nutrition, fetal corticosterone levels were negatively correlated to fetal weight and insulin content; fetal beta-cell mass increased from 355 +/- 48 microg in sham to 516 +/- 160 microg after maternal adrenalectomy; inhibition of steroid production by metyrapone induced a further increase to 757 +/- 125 microg. Our data support the new concept of a negative role of glucocorticoids in fetal beta-cell development.  相似文献   

3.

Aim

Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas.

Methods

Pregnant Wistar rats received dexamethasone acetate in their drinking water (1 µg/ml) during the last week or throughout gestation. Fetuses and their pancreases were analyzed at day 15 and 21 of gestation. Morphometrical analysis was performed on pancreatic sections after immunohistochemistry techniques and insulin secretion was evaluated on fetal islets collected in vitro.

Results

Dexamethasone given the last week or throughout gestation reduced the beta-cell mass in 21-day-old fetuses by respectively 18% or 62%. This was accompanied by a defect in insulin secretion. The alpha-cell mass was reduced similarly. Neither islet vascularization nor beta-cell proliferation was affected when dexamethasone was administered during the last week, which was however the case when given throughout gestation. When given from the beginning of gestation, dexamethasone reduced the number of cells expressing the early marker of endocrine lineage neurogenin-3 when analyzed at 15 days of fetal age.

Conclusions

GCs reduce the beta- and alpha-cell mass by different mechanisms according to the stage of development during which the treatment was applied. In fetuses exposed to glucocorticoids the last week of gestation only, beta-cell mass is reduced due to impairment of beta-cell commitment, whereas in fetuses exposed throughout gestation, islet vascularization and lower beta-cell proliferation are involved as well, amplifying the reduction of the endocrine mass.  相似文献   

4.
The physiological mechanisms underlying pancreatic beta-cell mass (BCM) homeostasis are complex and not fully resolved. Here we examined the factors contributing to the increased BCM following a mild glucose infusion (GI) whereby normoglycemia was maintained through 96 h. We used morphometric and immunochemical methods to investigate enhanced beta-cell growth and survival in Sprague-Dawley rats. BCM was elevated >2.5-fold over saline-infused control rats by 48 h and increased modestly thereafter. Unexpectedly, increases in beta-cell proliferation were not observed at any time point through 4 days. Instead, enhanced numbers of insulin(+) cell clusters and small islets (400-12,000 microm(2); approximately 23- to 124-microm diameter), mostly scattered among the acini, were observed in the GI rats by 48 h despite no difference in the numbers of medium to large islets. We previously showed that increased beta-cell growth in rodent models of insulin resistance and pancreatic regeneration involves increased activated Akt/PKB, a key beta-cell signaling intermediate, in both islets and endocrine cell clusters. GI in normal rats also leads to increased Akt activation in islet beta-cells, as well as in insulin(+) and insulin(-) cells in the common duct epithelium and endocrine clusters. This correlated with strong Pdx1 expression in these same cells. These results suggest that mechanisms other than proliferation underlie the rapid beta-cell growth response following a mild GI in the normal rat and involve Akt-regulated enhanced beta-cell survival potential and neogenesis from epithelial precursors.  相似文献   

5.
The proper regulation of blood glucose homeostasis in mammals requires an adequate relation between the capacity to produce insulin and metabolic demand. Insulin receptor substrate proteins (IRS) are signalling intermediates that are required to keep this balance because they are needed for insulin action in target tissues but also for insulin production in pancreatic beta-cells. The total functional beta-cell mass in an individual sets the limit of how much insulin can be produced at a given time. It can change adaptively to meet demand and studies in vivo indicate that the regulation of beta-cell mass involves IRS2, while IRS1 is only required for proper insulin production in beta-cells. Overexpression studies in isolated islets have shown that IRS2, but not IRS1 or Shc, is sufficient to induce proliferation of beta-cells and to protect against d-glucose-induced apoptosis. In light of the finding that many growth factors can regulate Irs2 in islets, this signalling intermediate could balance capacity for insulin production with demand. This review summarizes observations in mouse models and in primary beta-cells and proposes a new hypothetical model of how IRS2 might control beta-cell mass.  相似文献   

6.
7.
A cDNA termed reg was recently isolated by differential screening of a library prepared from regenerating islets isolated from pancreatic remnants of rats subjected to 90% pancreatectomy and nicotinamide treatment. This led to speculation that this gene may be involved in expansion of beta-cell mass. In the current study we have measured reg expression after implantation and resection of a solid insulinoma tumor into rats, maneuvers known, respectively, to reduce and reexpand the volume of beta-cells in the islet. Animals with an implanted insulinoma tumor became profoundly hypoglycemic. Islet beta-cells declined from the normal 75% of total islet volume to less than 30%, in concert with a marked reduction in the reg mRNA level. Removal of the tumor resulted in a sharp increase in beta-cell replication, as measured by [3H]thymidine incorporation and a return to normal beta-cell volume within 4 days of tumor resection. This was associated with a transient induction in reg expression compared to that in tumor-bearing animals, effectively returning the amount of reg mRNA to the levels found in normal animals within 48 h; at later time points after tumor removal (3-7 days) reg expression declined, but then rose toward normal. In situ hybridization analysis localized the initial induction in reg mRNA expression to the exocrine pancreas. Continuous infusion of insulin into normal rats for 4 days, a maneuver that does not significantly reduce beta-cell mass, resulted in dramatically reduced insulin mRNA in islets, but no change in the levels of reg mRNA. We conclude that the diminution in pancreatic beta-cell mass caused by subcutaneous implantation of an insulinoma is associated with reduced reg gene expression and that the increase in beta-cell replication after resection of the tumor is preceded by return of reg gene expression toward normal.  相似文献   

8.
Insulin feedback action on pancreatic beta-cell function   总被引:6,自引:0,他引:6  
  相似文献   

9.
Several hormones that regulate nutritional status also impact on bone metabolism. Preptin is a recently isolated 34-amino acid peptide hormone that is cosecreted with insulin and amylin from the pancreatic beta-cells. Preptin corresponds to Asp(69)-Leu(102) of pro-IGF-II. Increased circulating levels of a pro-IGF-II peptide complexed with IGF-binding protein-2 have been implicated in the high bone mass phenotype observed in patients with chronic hepatitis C infection. We have assessed preptin's activities on bone. Preptin dose-dependently stimulated the proliferation (cell number and DNA synthesis) of primary fetal rat osteoblasts and osteoblast-like cell lines at periphysiological concentrations (>10(-11) M). In addition, thymidine incorporation was stimulated in murine neonatal calvarial organ culture, likely reflecting the proliferation of cells from the osteoblast lineage. Preptin did not affect bone resorption in this model. Preptin induced phosphorylation of p42/p44 MAP kinases in osteoblastic cells in a dose-dependent manner (10(-8)-10(-10) M), and its proliferative effects on primary osteoblasts were blocked by MAP kinase kinase inhibitors. Preptin also reduced osteoblast apoptosis induced by serum deprivation, reducing the number of apoptotic cells by >20%. In vivo administration of preptin increased bone area and mineralizing surface in adult mice. These data demonstrate that preptin, which is cosecreted from the pancreatic beta-cell with amylin and insulin, is anabolic to bone and may contribute to the preservation of bone mass observed in hyperinsulinemic states such as obesity.  相似文献   

10.
Type 2 diabetes is increasingly viewed as a disease of insulin deficiency due not only to intrinsic pancreatic beta-cell dysfunction but also to reduction of beta-cell mass. It is likely that, in diabetes-prone subjects, the regulated beta-cell turnover that adapts cell mass to body's insulin requirements is impaired, presumably on a genetic basis. We still have a limited knowledge of how and when this derangement occurs and what might be the most effective therapeutic strategy to preserve beta-cell mass. The animal models of type 2 diabetes with reduced beta-cell mass described in this review can be extremely helpful (a) to have insight into the mechanisms underlying the defective growth or accelerated loss of beta-cells leading to the beta-cell mass reduction; (b) to investigate in prospective studies the mechanisms of compensatory adaptation and subsequent failure of a reduced beta-cell mass. Furthermore, these models are of invaluable importance to test the effectiveness of potential therapeutic agents that either stimulate beta-cell growth or inhibit beta-cell death.  相似文献   

11.
The function of pancreatic beta-cells is the synthesis and release of insulin, the main hormone involved in blood glucose homeostasis. Estrogen receptors, ER alpha and ER beta, are important molecules involved in glucose metabolism, yet their role in pancreatic beta-cell physiology is still greatly unknown. In this report we show that both ER alpha and ER beta are present in pancreatic beta-cells. Long term exposure to physiological concentrations of 17beta-estradiol (E2) increased beta-cell insulin content, insulin gene expression and insulin release, yet pancreatic beta-cell mass was unaltered. The up-regulation of pancreatic beta-cell insulin content was imitated by environmentally relevant doses of the widespread endocrine disruptor Bisphenol-A (BPA). The use of ER alpha and ER beta agonists as well as ER alphaKO and ER betaKO mice suggests that the estrogen receptor involved is ER alpha. The up-regulation of pancreatic insulin content by ER alpha activation involves ERK1/2. These data may be important to explain the actions of E2 and environmental estrogens in endocrine pancreatic function and blood glucose homeostasis.  相似文献   

12.
13.
Diabetes is caused by impaired insulin secretion in pancreatic beta-cells and peripheral insulin resistance. Overload of pancreatic beta-cells leads to beta-cell exhaustion and finally to the development of diabetes. Reduced beta-cell mass is evident in type 2 diabetes, and apoptosis is implicated in this process. One characteristic feature of beta-cells is highly developed endoplasmic reticulum (ER) due to a heavy engagement in insulin secretion. The ER serves several important functions, including post-translational modification, folding, and assembly of newly synthesized secretory proteins, and its proper function is essential to cell survival. Various conditions can interfere with ER function and these conditions are called ER stress. Recently, we found that nitric oxide (NO)-induced apoptosis in beta-cells is mediated by the ER-stress pathway. NO causes ER stress and leads to apoptosis through induction of ER stress-associated apoptosis factor CHOP. The Akita mouse with a missense mutation (Cys96Tyr) in the insulin 2 gene has hyperglycemia and a reduced beta-cell mass. This mutation disrupts a disulfide bond between A and B chains of insulin and may induce its conformational change. In the development of diabetes in Akita mice, mRNAs for an ER chaperone Bip and CHOP were induced in the pancreas. Overexpression of the mutant insulin in mouse MIN6 beta-cells induced CHOP expression and led to apoptosis. Targeted disruption of the CHOP gene did not delay the onset of diabetes in the homozygous Akita mice, but it protected islet cells from apoptosis and delayed the onset of diabetes in the heterozygous Akita mice. We conclude that ER overload in beta-cells causes ER stress and leads to apoptosis via CHOP induction. These results highlight the importance of chronic ER stress in beta-cell apoptosis in type 2 diabetes, and suggest a new target to the management of the disease.  相似文献   

14.
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.  相似文献   

15.
Most cell types are functionally coupled by connexin (Cx) channels, i.e. exchange cytoplasmic ions and small metabolites through gap junction domains of their membrane. This form of direct cell-to-cell communication occurs in all existing animals, whatever their position in the phylogenetic scale, and up to humans. Pancreatic beta-cells are no exception, and normally cross-talk with their neighbors via channels made of Cx36. These exchanges importantly contribute to coordinate and synchronize the function of individual cells within pancreatic islets, particularly in the context of glucose-induced insulin secretion. Compelling evidence now indicates that Cx36-mediated coupling, and/or the Cx36 protein per se, play significant regulatory roles in various beta-cell functions, ranging from the biosynthesis, storage and release of insulin. Recent preliminary data further suggest that the protein may also be implicated in the balance of beta-cell growth versus necrosis and apoptosis, and in the regulated expression of specific genes. Here, we review this evidence, discuss the possible involvement of Cx36 in the pathophysiology of diabetes, and evaluate the relevance of this connexin in the therapeutic approaches to the disease.  相似文献   

16.
17.
Liang K  Du W  Zhu W  Liu S  Cui Y  Sun H  Luo B  Xue Y  Yang L  Chen L  Li F 《The Journal of biological chemistry》2011,286(45):39537-39545
The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes.  相似文献   

18.
The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells attached, spread out, and proliferated into monolayers mainly consisting of insulin-containing cells. The number of beta-cells in S-phase was increased from 0.9-6.5% as determined by immunochemical staining of bromodeoxyuridine incorporated into insulin-positive cells. The increase in cell number was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin. It is concluded that GH is a potent growth factor for the differentiated pancreatic beta-cell.  相似文献   

19.
Lipoprotein lipase (LpL) provides tissues with triglyceride-derived fatty acids. Fatty acids affect beta-cell function, and LpL overexpression decreases insulin secretion in cell lines, but whether LpL is regulated in beta-cells is unknown. To test the hypothesis that glucose and insulin regulate LpL activity in beta-cells, we studied pancreatic islets and INS-1 cells. Acute exposure of beta-cells to physiological concentrations of glucose stimulated both total cellular LpL activity and heparin-releasable LpL activity. Glucose had no effect on total LpL protein mass but instead promoted the appearance of LpL protein in a heparin-releasable fraction, suggesting that glucose stimulates the translocation of LpL from intracellular to extracellular sites in beta-cells. The induction of heparin-releasable LpL activity was unaffected by treatment with diazoxide, an inhibitor of insulin exocytosis that does not alter glucose metabolism but was blocked by conditions that inhibit glucose metabolism. In vitro hyperinsulinemia had no effect on LpL activity in the presence of low concentrations of glucose but increased LpL activity in the presence of 20 mm glucose. Using dual-laser confocal microscopy, we detected intracellular LpL in vesicles distinct from those containing insulin. LpL was also detected at the cell surface and was displaced from this site by heparin in dispersed islets and INS-1 cells. These results show that glucose metabolism controls the trafficking of LpL activity in beta-cells independent of insulin secretion. They suggest that hyperglycemia and hyperinsulinemia associated with insulin resistance may contribute to progressive beta-cell dysfunction by increasing LpL-mediated delivery of lipid to islets.  相似文献   

20.
We have previously shown that fetuses from undernourished (U) pregnant rats exhibited an increased beta-cell mass probably related to an enhanced IGF-I replicative response. Because IGF-I signaling pathways have been implicated in regulating beta-cell growth, we investigated in this study the IGF-I transduction system in U fetuses. To this end, an in vitro model of primary fetal islets was developed to characterize glucose/IGF-I-mediated signaling that specially influences beta-cell proliferation. We found that U fetal islets showed a greater replicative response to glucose and IGF-I than controls. Furthermore, insulin receptor substrate (IRS)-2 protein and its association with p85 were also increased. In the complete absence of IGF-I or stimulatory glucose, U islets presented an increased basal phosphorylation of downstream signals of the phosphatidylinositol 3-kinase (PI3K) pathway such as PKB, glycogen synthase kinase (GSK)3alpha/beta, PKCzeta, and mammalian target of rapamycin (mTOR). Similarly, phosphorylation of these proteins (except GSK3alpha/beta) by glucose and IGF-I was augmented even though total protein content remained unchanged. Downstream of PKB, direct glucose activation of mTOR was increased as well. In contrast, ERK1/2 phosphorylation was unaffected by undernutrition, but ERK activation seemed to be required to induce a higher proliferative response in U islets. In conclusion, we have demonstrated that fetal U islets show increased IRS-2 content and an enhancement in both basal and glucose/IGF-I activations of the IRS-2/PI3K/PKB pathway. These molecular changes may be responsible for the greater glucose/IGF-I islet replication and contribute to the increased beta-cell mass found in these fetuses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号