共查询到20条相似文献,搜索用时 0 毫秒
1.
S. K. Katti A. H. Robbins Y. Yang W. W. Wells 《Protein science : a publication of the Protein Society》1995,4(10):1998-2005
We report here the first three-dimensional structure of a mammalian thioltransferase as determined by single crystal X-ray crystallography at 2.2 A resolution. The protein is known for its thiol-redox properties and dehydroascorbate reductase activity. Recombinant pig liver thioltransferase expressed in Escherichia coli was crystallized in its oxidized form by vapor diffusion technique. The structure was determined by multiple isomorphous replacement method using four heavy-atom derivatives. The protein folds into an alpha/beta structure with a four-stranded mixed beta-sheet in the core, flanked on either side by helices. The fold is similar to that found in other thiol-redox proteins, viz. E. coli thioredoxin and bacteriophage T4 glutaredoxin, and thus seems to be conserved in these functionally related proteins. The active site disulfide (Cys 22-Cys 25) is located on a protrusion on the molecular surface. Cys 22, which is known to have an abnormally low pKa of 3.8, is accessible from the exterior of the molecule. Pro 70, which is in close proximity to the disulfide bridge, assumes a conserved cis-peptide configuration. Mutational data available on the protein are in agreement with the three-dimensional structure. 相似文献
2.
M Bolognesi L Pugliese G Gatti F Frigerio A Coda L Antolini H P Schnebli E Menegatti G Amiconi P Ascenzi 《Journal of molecular recognition : JMR》1990,3(4):163-168
The crystal structure of the molecular complex formed by bovine alpha-chymotrypsin and the recombinant serine proteinase inhibitor eglin c from Hirudo medicinalis has been solved using monoclinic crystals of the complex, reported previously. Four circle diffractometer data at 3.0 A resolution were employed to determine the structure by molecular replacement techniques. Bovine alpha-chymotrypsin alone was used as the search model; it allowed us to correctly orient and translate the enzyme in the unit cell and to obtain sufficient electron density for positioning the eglin c molecule. After independent rigid body refinement of the two complex components, the molecular model yielded a crystallographic R factor of 0.39. Five iterative cycles of restrained crystallographic refinement and model building were conducted, gradually increasing resolution. The current R factor at 2.6 A resolution (diffractometer data) is 0.18. The model includes 56 solvent molecules. Eglin c binds to bovine alpha-chymotrypsin in a manner consistent with other known serine proteinase/inhibitor complex structures. The reactive site loop shows the expected conformation for productive binding and is in tight contact with bovine alpha-chymotrypsin between subsites P3 and P'2; Leu 451 acts as the P1 residue, located in the primary specificity S1 site of the enzyme. Hydrogen bonds equivalent to those observed in complexes of trypsin(ogen) with the pancreatic basic- and secretory-inhibitors are found around the scissile peptide bond. 相似文献
3.
Tej P. Singh Sujata Sharma S. Karthikeyan Christian Betzel Krishan L. Bhatia 《Proteins》1998,33(1):30-38
Lactoferrin is an iron binding glycoprotein with a molecular weight of 80 kDa. The molecule is divided into two lobes representing the N-terminal and C-terminal halves of the polypeptide chain, each containing an iron binding site. The serine proteinases such as trypsin, chymotrypsin, and pepsin hydrolyze lactoferrin into two unequal halves while proteinase K divides this protein into two equal halves. In the first step of hydrolysis by proteinase K, the C- and N-lobes, each having a molecular weight of approximately 40 kDa, are generated. In the next step, the lobes are further hydrolyzed into small molecular weight peptides. The proteinase K isolated from the hydrolyzed product does not show enzymatic activity suggesting that the enzyme is inhibited. Furthermore, the hydrolysis experiments on N-lobe and C-lobe showed that the inhibitory fragment came from the C-lobe. The purified lactoferrin fragment was found to be a decapeptide with an amino acid sequence of H2N-Val-Ala-Gln-Gly-Ala-Ala-Gly-Leu-Ala-COOH. The complex formed between proteinase K and lactoferrin fragment was crystallized by microdialysis. The crystals belonged to the monoclinic space group P21with cell dimensions a = 44.4 Å, b = 38.6 Å, c = 79.2 Å, β = 105.8o and Z = 2. The crystal structure has been determined at 2.4 Å resolution. It has been refined to an R factor of 0.163 for 9044 reflections. The Lf-fragment forms several intermolecular interactions with proteinase K. The Ser-224 Oγ and His-57 Nϵ2 move away to a distance of 3.68 Å in the complex. In the crystal structure, Gln-3I (I indicates inhibitor i.e., lactoferrin fragment) is involved in a direct intermolecular interaction with a symmetry related proteinase K molecule through a strong hydrogen bond with Asp-254. The mode of intermolecular interactions in the complex conformational features of the enzyme and placement of the fragment with respect to the enzyme resemble with the molecular complex of proteinase K with its natural inhibitor PKI3 from wheat. Proteins 33:30–38, 1998. © 1998 Wiley-Liss, Inc. 相似文献
4.
The crystal structure of the complex of mung bean inhibitor lysine active fragment with bovine beta-trypsin has been determined by X-ray crystallographic analysis at a resolution of 1.8 A. Refinement of the model of the complex converged at a final R value of 0.16. From the resulting electron density map, about one-third of the residues of the inhibitor were identified and two residues, at position P4 and P2' respectively, were found to be inconsistent with the sequence reported previously. The peptide chain of the inhibitor at the trypsin active site turns back sharply at Pro23I and forms a 9-residue reactive loop, which interacts with trypsin in a similar manner to the other families of inhibitors, suggesting an important and common role of these regions in exhibiting inhibitory activity. 相似文献
5.
Chandra V Jasti J Kaur P Dey S Perbandt M Srinivasan A Betzel Ch Singh TP 《The Journal of biological chemistry》2002,277(43):41079-41085
Phospholipase A(2) is an important enzyme involved in the production of prostaglandins and their related compounds causing inflammatory disorders. Among the several peptides tested, the peptide Phe-Leu-Ser-Tyr-Lys (FLSYK) showed the highest inhibition. The dissociation constant (K(d)) for this peptide was calculated to be 3.57 +/- 0.05 x 10(-9) m. In order to further improve the degree of inhibition of phospholipase A(2), a complex between Russells viper snake venom phospholipase A(2) and a peptide inhibitor FLSYK was crystallized, and its structure was determined by crystallographic methods and refined to an R-factor of 0.205 at 1.8 A resolution. The structure contains two crystallographically independent molecules of phospholipase A(2) (molecules A and B) and a peptide molecule specifically bound to molecule A only. The two molecules formed an asymmetric dimer. The dimerization caused a modification in the binding site of molecule A. The overall conformations of molecules A and B were found to be generally similar except three regions i.e. the Trp-31-containing loop (residues 25-34), the beta-wing consisting of two antiparallel beta-strands (residues 74-85) and the C-terminal region (residues 119-133). Out of the above three, the most striking difference pertains to the conformation of Trp-31 in the two molecules. The orientation of Trp-31 in molecule A was suitable for the binding of FLSYK, while it disallowed the binding of peptide to molecule B. The structure of the complex clearly shows that the peptide is so placed in the binding site of molecule A that the side chain of its lysine residue interacted extensively with the enzyme and formed several hydrogen bonds in addition to a strong electrostatic interaction with critical Asp-49. The C-terminal carboxylic group of the peptide interacted with the catalytic residue His-48. 相似文献
6.
F Frigerio A Coda L Pugliese C Lionetti E Menegatti G Amiconi H P Schnebli P Ascenzi M Bolognesi 《Journal of molecular biology》1992,225(1):107-123
The crystal structure of the complex between bovine alpha-chymotrypsin and the leech (Hirudo medicinalis) protein proteinase inhibitor eglin c has been refined at 2.0 A resolution to a crystallographic R-factor of 0.167. The structure of the complex includes 2290 protein and 143 solvent atoms. Eglin c is bound to the cognate enzyme through interactions involving 11 residues of the inhibitor (sites P5-P4' in the reactive site loop, P10' and P23') and 17 residues from chymotrypsin. Binding of eglin c to the enzyme causes a contained hinge-bending movement around residues P4 and P4' of the inhibitor. The tertiary structure of chymotrypsin is little affected, with the exception of the 10-13 region, where an ordered structure for the polypeptide chain is observed. The overall binding mode is consistent with those found in other serine proteinase-protein-inhibitor complexes, including those from different inhibition families. Contained, but significant differences are observed in the establishment of intramolecular hydrogen bonds and polar interactions stabilizing the structure of the intact inhibitor, if the structure of eglin c in its complex with chymotrypsin is compared with that of other eglin c-serine proteinase complexes. 相似文献
7.
The three-dimensional structure of the human immunoglobulin fragment Fab New (IgG1, lambda) has been refined to a crystallographic R-factor of 16.9% to 2 A resolution. Rms deviations of the final model from ideal geometry are 0.014 A for bond distances and 3.03 degrees for bond angles. Refinement was based on a new X-ray data set including 28,301 reflections with F > 2.5 sigma(F) from 6.0 to 2.0 A resolution. The starting model for the refinement procedure reported here is from the Brookhaven Protein Data Bank entry 3FAB (rev. 1981). Differences between the initial and final models include modified polypeptide-chain folding in the third complementarity-determining region (CDR3) and the third framework region (FR3) of VH and in some exposed loops of CL and CH1. Amino acid sequence changes were determined at a number of positions by inspection of difference electron density maps. The incorporation of amino acid sequence changes results in an improved VH framework model for the "humanization" of monoclonal antibodies. 相似文献
8.
Crystal structure analysis of an A-DNA fragment at 1.8 A resolution: d(GCCCGGGC). 总被引:3,自引:9,他引:3 下载免费PDF全文
Single crystals of the self-complementary octadeoxyribonucleotide d(GCCCGGGC) have been analysed by X-ray diffraction methods at a resolution of 1.8 A. The tetragonal unit cell of space group P4(3)2(1)2 has dimensions of a = 43.25 A and c = 24.61 A and contains eight strands of the oligonucleotide. The structure was refined by standard crystallographic techniques to an R factor of 17.1% using 1359 3 sigma structure factor observations. Two strands of the oligonucleotide are related by the crystallographic dyad axis to form a DNA helix in the A conformation. The d(GCCCGGGC) helix is characterized by a wide open major groove, a near perpendicular orientation of base pairs to the helix axis and an unusually small average helix twist angle of 31.3 degrees indicating a slightly underwound helix with 11.5 base pairs per turn. Extensive cross-strand stacking between guanine bases at the central cytosine-guanine step is made possible by a number of local conformational adjustments including a fully extended sugar-phosphate backbone of the central guanosine nucleotide. 相似文献
9.
Krishna SS Tautz L Xu Q McMullan D Miller MD Abdubek P Ambing E Astakhova T Axelrod HL Carlton D Chiu HJ Clayton T DiDonato M Duan L Elsliger MA Grzechnik SK Hale J Hampton E Han GW Haugen J Jaroszewski L Jin KK Klock HE Knuth MW Koesema E Morse AT Mustelin T Nigoghossian E Oommachen S Reyes R Rife CL van den Bedem H Weekes D White A Hodgson KO Wooley J Deacon AM Godzik A Lesley SA Wilson IA 《Proteins》2007,69(2):415-421
10.
Singh G Jasti J Saravanan K Sharma S Kaur P Srinivasan A Singh TP 《Protein science : a publication of the Protein Society》2005,14(2):395-400
This is the first evidence of a naturally bound fatty acid to a group I Phospholipase A(2) (PLA(2)) and also to a PLA(2) with Asp 49. The fatty acid identified as n-tridecanoic acid is observed at the substrate recognition site of PLA(2) hydrophobic channel. The complex was isolated from the venom of Bungarus caeruleus (Common Indian Krait). The primary sequence of the PLA(2) was determined using the cDNA method. Three-dimensional structure has been solved by the molecular replacement method and refined using the CNS package to a final R factor of 19.8% for the data in the resolution range from 20.0 to 2.7 A. The final refined model is comprised of 912 protein atoms, one sodium ion, one molecule of n-tridecanoic acid, and 60 water molecules. The sodium ion is located in the calcium-binding loop with a sevenfold coordination. A characteristic extra electron density was observed in the hydrophobic channel of the enzyme, into which a molecule of n-tridecanoic acid was clearly fitted. The MALDI-TOF measurements of the crystals had earlier indicated an increase in the molecular mass of PLA(2) by 212 Da over the native PLA(2). A major part of the ligand fits well in the binding pocket and interacts directly with His 48 and Asp 49. Although the overall structure of PLA(2) in the present complex is similar to the native structure reported earlier, it differs significantly in the folding of its calcium-binding loop. 相似文献
11.
Crystal structure of the complex between actin and human vitamin D-binding protein at 2.5 A resolution 总被引:1,自引:0,他引:1
A high-affinity complex formed between G-actin and plasma vitamin D-binding protein (DBP) is believed to form part of a scavenging system in the plasma for removing actin released from damaged cells. In the study presented here, we describe the crystal structure of the complex between actin and human vitamin D-binding protein at 2.5 A resolution. The complex contains one molecule of each protein bound together by extensive ionic, polar, and hydrophobic interactions. It includes an ATP and a calcium ion bound to actin, but no evidence of vitamin D metabolites bound to the DBP. Both actin and DBP are multidomain molecules, two major domains in actin and three in DBP. All of these domains contribute to the interaction between the molecules. DBP enfolds the end of the actin molecule, principally in actin subdomain 3 but with additional interactions in actin subdomain 1. This orientation is similar to the binding of profilin to actin, as predicted from previous studies. The more extensive interactions of DBP give an affinity for actin some 3 orders of magnitude higher than that for profilin. The larger "footprint" of DBP on actin also leads to an overlap with the actin-binding site of gelsolin domain I. 相似文献
12.
Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2.5 A resolution 总被引:7,自引:0,他引:7
H L Monaco G Zanotti P Spadon M Bolognesi L Sawyer E E Eliopoulos 《Journal of molecular biology》1987,197(4):695-706
The structure of the trigonal crystal form of bovine beta-lactoglobulin has been determined by X-ray diffraction methods. An electron density map, calculated with phases obtained by the multiple isomorphous replacement method, served as a starting point for alternate cycles of model building and restrained least-squares refinement. The model of the molecule fitted to the initial Fourier map was the one built for the orthorhombic crystal form of beta-lactoglobulin, solved at 2.8 A resolution (1 A = 0.1 nm). The final R factor for 1456 atoms (1276 non-hydrogen protein atoms and 180 solvent atoms) is 0.22, including 5245 reflections from 6.0 to 2.5 A. The molecule shows significant differences in the two crystal forms mentioned, mainly due to different packing. In the trigonal form, the species crystallized does not appear to be dimeric, but a linear polymer with tight intermolecular contacts. A difference electron density map between the complex of beta-lactoglobulin with retinol and the native protein shows no significant peaks in the cavity which, in the similar retinol-binding protein, binds the chromophore. Instead, differences are found at a surface pocket, which is limited almost completely by hydrophobic residues. 相似文献
13.
The X-ray crystal structure of the carboxypeptidase A-L-benzylsuccinate complex has been refined at 2.0 A resolution to a final R-factor of 0.166. One molecule of the inhibitor binds to the enzyme active site. The terminal carboxylate forms a salt link with the guanidinium group of Arg145 and hydrogen bonds with Tyr248 and Asn144. The second carboxylate group binds to the zinc ion in an asymmetric bidentate fashion replacing the water molecule of the native structure. The zinc ion moves 0.5 A from its position in the native structure to accommodate the inhibitor binding. The overall stereochemistry around the zinc can be considered a distorted tetrahedron, although six atoms of the co-ordinated groups lie within 3.0 A from the zinc ion. The key for the strong inhibitory properties of L-benzylsuccinate can be found in its ability both to co-ordinate the zinc and to form a short carboxyl-carboxylate-type hydrogen bond (2.5 A) with Glu270. 相似文献
14.
E H Vatzaki S C Allen D D Leonidas K Trautwein-Fritz J Stackhouse S A Benner K R Acharya 《European journal of biochemistry》1999,260(1):176-182
A variant of bovine pancreatic ribonuclease A has been prepared with seven amino acid substitutions (Q55K, N62K, A64T, Y76K, S80R, E111G, N113K). These substitutions recreate in RNase A the basic surface found in bovine seminal RNase, a homologue of pancreatic RNase that diverged some 35 million years ago. Substitution of a portion of this basic surface (positions 55, 62, 64, 111 and 113) enhances the immunosuppressive activity of the RNase variant, activity found in native seminal RNase, while substitution of another portion (positions 76 and 80) attenuates the activity. Further, introduction of Gly at position 111 has been shown to increase the catalytic activity of RNase against double-stranded RNA. The variant and the wild-type (recombinant) protein were crystallized and their structures determined to a resolution of 2.0 A. Each of the mutated amino acids is seen in the electron density map. The main change observed in the mutant structure compared with the wild-type is the region encompassing residues 16-22, where the structure is more disordered. This loop is the region where the polypeptide chain of RNase A is cleaved by subtilisin to form RNase S, and undergoes conformational change to allow residues 1-20 of the RNase to swap between subunits in the covalent seminal RNase dimer. 相似文献
15.
16.
Crystal structure of MunI restriction endonuclease in complex with cognate DNA at 1.7 A resolution. 下载免费PDF全文
The MunI restriction enzyme recognizes the palindromic hexanucleotide sequence C/AATTG (the '/' indicates the cleavage site). The crystal structure of its active site mutant D83A bound to cognate DNA has been determined at 1.7 A resolution. Base-specific contacts between MunI and DNA occur exclusively in the major groove. While DNA-binding sites of most other restriction enzymes are comprised of discontinuous sequence segments, MunI combines all residues involved in the base-specific contacts within one short stretch (residues R115-R121) located at the N-terminal region of the 3(10)4 helix. The outer CG base pair of the recognition sequence is recognized solely by R115 through hydrogen bonds made by backbone and side chain atoms to both bases. The mechanism of recognition of the central AATT nucleotides by MunI is similar to that of EcoRI, which recognizes the G/AATTC sequence. The local conformation of AATT deviates from the typical B-DNA form and is remarkably similar to EcoRI-DNA. It appears to be essential for specific hydrogen bonding and recognition by MunI and EcoRI. 相似文献
17.
The CD8 glycoprotein functions as an essential element in the control of T-cell selection, maturation and the TCR-mediated response to peptide antigen. CD8 is expressed as both heterodimeric CD8alphabeta and homodimeric CD8alphaalpha isoforms, which have distinct physiological roles and exhibit tissue-specific expression patterns. CD8alphaalpha has previously been crystallized in complex with class I pMHC and, more recently, with the mouse class Ib thymic leukemia antigen (TL). Here, we present the crystal structure of a soluble form of mouse CD8alphaalpha in complex with rat monoclonal antibody YTS 105.18 Fab fragment at 2.88 A resolution. YTS 105.18, which is commonly used in the blockade of CD8+ T-cell activation in response to peptide antigen, is specific for mouse CD8alpha. The YTS 105.18 Fab is one of only five rat IgG Fab structures to have been reported to date. Analysis of the YTS 105.18 Fab epitope on CD8alpha reveals that this antibody blocks CD8 activity by hydrogen bonding to residues that are critical for interaction with both class I pMHC and TL. Structural comparison of the liganded and unliganded forms of soluble CD8alphaalpha indicates that the mouse CD8alphaalpha immunoglobulin-domain dimer does not undergo significant structural alteration upon interaction either with class I pMHC or TL. 相似文献
18.
The enzyme behavior in anhydrous media has important applications in biotechnology. So far chemical modifications and protein engineering have been used to alter the catalytic power of the enzymes. For the first time, it is demonstrated that an exposure of enzyme to anhydrous organic solvents at optimized high temperature enhances its catalytic power through local changes at the binding region. Six enzymes: proteinase K, wheat germ acid phosphatase, alpha-amylase, beta-glucosidase, chymotrypsin and trypsin have been exposed to acetonitrile at 70 degrees C for three hours. The activities of these enzymes were found to be considerably enhanced. In order to understand the basis of this change in the activity of these enzymes, the structure of one of these treated enzymes, proteinase K has been analyzed in detail using X-ray diffraction method. The overall structure of the enzyme is similar to the native structure in aqueous environment. The hydrogen bonding system of the catalytic triad is intact after the treatment. However, the water structure in the substrate binding site undergoes some rearrangement as some of the water molecules are either displaced or completely absent. The most striking observation concerning the water structure pertains to the complete deletion of the water molecule which occupied the position at the so-called oxyanion hole in the active site of the native enzyme. Three acetonitrile molecules were found in the present structure. All the acetonitrile molecules are located in the recognition site. The sites occupied by acetonitrile molecules are independent of water molecules. The acetonitrile molecules are involved in extensive interactions with the protein atoms. All of them are interlinked through water molecules. The methyl group of one of the acetonitrile molecules (CCN1) interacts simultaneously with the hydrophobic side chains of Leu-96, Ile-107, and Leu-133. The development of such a hydrophobic environment at the recognition site introduces a striking conformation change in Ile-107 by rotating its side chain about C(alpha)--C(beta) bond by 180 degrees to bring about the delta-methyl group within the range of attractive van der Waals interactions with the methyl group of CCN1. A similar change has earlier been observed in proteinase K when it is complexed to a substrate analog lactoferrin fragment. 相似文献
19.
Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions 总被引:113,自引:0,他引:113
The crystal structure of a complex containing the engrailed homeodomain and a duplex DNA site has been determined at 2.8 A resolution and refined to a crystallographic R factor of 24.4%. In this complex, two separate regions of the 61 amino acid polypeptide contact a TAAT subsite. An N-terminal arm fits into the minor groove, and the side chains of Arg-3 and Arg-5 make contacts near the 5' end of this "core consensus" binding site. An alpha helix fits into the major groove, and the side chains of IIe-47 and Asn-51 contact base pairs near the 3' end of the TAAT site. This "recognition helix" is part of a structurally conserved helix-turn-helix unit, but these helices are longer than the corresponding helices in the lambda repressor, and the relationship between the helix-turn-helix unit and the DNA is significantly different. 相似文献