首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨丙泊酚预处理对大鼠离体心肌浅低温缺血/再灌注(I/R)损伤后心肌细胞凋亡及线粒体细胞色素C释放的影响。方法:应用Langendorff离体心脏灌注模型,取50只SD大鼠随机分为5组:对照组(C组),二甲基亚砜(DMSO)预处理组(D组),25、50、100μmol·L^-1丙泊酚预处理纽(P1、P2、P3组)。各组均浅低温缺血55min,再常温灌注60min。D组、P1、P2、P3组在缺血前分别以含DMSO、相应浓度丙泊酚的K-H液灌注10min,再冲洗5min,重复2次。记录平衡灌注末、缺血前即刻、再灌注30、60min时的心功能指标。再灌注60min时测定凋亡细胞,提取心肌线粒体,测定线粒体和胞浆的细胞色素C水平。结果:与C组相比,P3组再灌注30min、60min时左室舒张末压(LVEDP)降低、左室发展压(LVDP)升高(P〈0.05或P〈0.01);P2、P3组再灌注末心肌细胞凋亡率降低(P〈0.05或P〈0.01),线粒体细胞色素c释放减少,胞浆细胞色素C的量明显降低(P〈0.05或P〈0.01)。结论:丙泊酚预处理能够通过抑制心肌线粒体细胞色素C释放到胞浆,降低浅低温I/R损伤心肌细胞凋亡率,减轻心肌桶伤.  相似文献   

2.
NADH increases during ischemia because O(2) shortage limits NADH oxidation at the electron transport chain. Ischemic (IPC) and anesthetic preconditioning (APC) attenuate cardiac reperfusion injury. We examined whether IPC and APC similarly alter NADH, i.e., mitochondrial metabolism. NADH fluorescence was measured at the left ventricular wall of 40 Langendorff-prepared guinea pig hearts. IPC was achieved by two 5-min periods of ischemia and APC by exposure to 0.5 or 1.3 mM sevoflurane for 15 min, each ending 30 min before 30 min of global ischemia. During ischemia, NADH initially increased in nonpreconditioned control hearts and then gradually declined below baseline levels. This increase in NADH was lower after APC but not after IPC. The subsequent decline was slower after IPC and APC. On reperfusion, NADH was less decreased after IPC or APC, mechanical and metabolic functions were improved, and infarct size was lower compared with controls. Our results indicate that IPC and APC cause distinctive changes in mitochondrial metabolism during ischemia and thus lead to improved function and tissue viability on reperfusion.  相似文献   

3.
缺血预处理及低温对幼兔心肌缺血/再灌注损伤的影响   总被引:1,自引:0,他引:1  
目的:探讨缺血预处理(ischemic preconditioning,IP)及低温对幼兔心脏缺血/再灌注损伤的影响。方法:采用Langendorff离体心脏灌注模型,取3~4周龄幼兔心脏,分别给予不同次数的IP后使其在20℃低温下缺血或给予同样次数的IP后使其分别在不同低温下缺血。常温再灌注30min。记录心脏缺血/再灌注前后左心室功能指标,测定再灌注末心肌组织中ATP和丙二醛(MDA)含量,超氧化物歧化酶(SOD)及Ca^2 -ATP酶的活性。结果:再灌注末,IP2组左心室各功能指标的恢复率及心肌组织的ATP含量及Ca^2 -ATP酶的活性均显著高于Con组和IP3组;SIP1、SIP2组的左心室各功能指标的恢复率及心肌组织的ATP含量均分别显著高于SConn1组和SCon2组。其心肌组织MDA含量亦分别低于SCon1组和SCon2组。结论:IP可减轻低温缺血的幼兔心肌缺血/再灌注损伤,其效应与IP的次数和低温程度有关。  相似文献   

4.
Previous work from this laboratory using near-infrared optical spectroscopy of myoglobin has shown that approximately 20% of the myocardium is hypoxic in buffer-perfused hearts that are perfused with fully oxygenated buffer at 37 degrees C. The present study was undertaken to determine cardiac myoglobin saturation in buffer-perfused hearts when cardiac contractility was increased with epinephrine and decreased during cardiac arrest with KCl. Infusion of epinephrine to achieve a doubling of contractility, as measured by left ventricular maximum pressure change over time (dP/dt), resulted in a decrease in mean myoglobin saturation from 79% at baseline to 65% and a decrease in coronary venous oxygen tension from 155 mmHg at baseline to 85 mmHg. Cardiac arrest with KCl increased mean myoglobin saturation to 100% and coronary venous oxygen tension to 390 mmHg. A previously developed computer model of oxygen transport in the myocardium was used to calculate the probability distribution of intracellular oxygen tension and the hypoxic fraction of the myocardium with an oxygen tension below 0.5 mmHg. The hypoxic fraction of the myocardium was approximately 15% at baseline, increased to approximately 30% during epinephrine infusion, and fell to approximately 0% during cardiac arrest. The coronary venous adenosine concentration changed in parallel with the hypoxic fraction of the myocardium during epinephrine and KCl. It is concluded that catecholamine stimulation of buffer-perfused hearts increases hypoxia in the myocardium and that the increase in venous adenosine concentration is a reflection of the larger hypoxic fraction of myocardium that is releasing adenosine.  相似文献   

5.
AIM OF THE STUDY: To determine the effects of two-staged ischemic preconditioning on myocardial noradrenaline in prolonged ischemia and reperfusion. METHODS: Thirty-two male Wistar rats anesthetised with urethane randomly divided into 2 groups: group 1 (ischemic preconditioning group, n = 16), and group 2 (control, n = 16). Myocardial interstitial noradrenaline levels were measured using a microdialysis technique. Ischemic preconditioning was elicited by two episodes: 5 min of ischemia and 10 min of reperfusion. The intermittent occlusions were followed by prolonged occlusion (60 min) and reperfusion (60 min). RESULTS: An increase in interstitial noradrenaline was observed in 10 min of prolonged ischemia in group 2, and in 20 min in group 1. After 20 min of myocardial ischemia there was a significant difference between groups (p < 0.05) in interstitial noradrenaline levels. In control group, it was 60% higher. In reperfusion, noradrenaline levels decreased markedly in group 1. CONCLUSION: We suggest that ischemic preconditioning by two episodes: 5-min ischemia and 10-min reperfusion prevents excessive noradrenaline interstitial accumulation, perhaps, through protection of physiological uptake I carrier.  相似文献   

6.
The effects of total ischemia and subsequent reperfusion on the formation of anaerobic metabolism products and their release into myocardial effluent were studied in isolated guinea pig hearts. During 30-min ischemia myocardial ATP and phosphocreatine decreased to 34 and 15% of the initial levels, respectively; this was accompanied by alanine formation and approximately stoichiometric glutamate loss. The increase in malate in ischemic myocardium corresponded to the anaplerotic flux aspartate----oxaloacetate----malate; the succinate production being commensurable to alpha-ketoglutarate formation in the alanine aminotransferase reaction. The release of lactate, alanine, succinate, creatine and pyruvate trace amounts into the myocardial effluent was observed during an early phase of the reperfusion using 1H-NMR. The rates of metabolite release reduced as follows: lactate much greater than alanine greater than succinate greater than creatine. By the 30th min of the reperfusion the decrease in these metabolites tissue contents was accompanied by the recovery of ATP and phosphocreatine levels up to 65 and 90% of the initial ones, respectively. The data obtained demonstrate that the formation and the release of succinate, alanine and creatine from the heart as well as of lactate may indicate profound disturbances in energy metabolism.  相似文献   

7.
In the present study, we tested the effects of long-term estrogen replacement treatment on myocardial ischemia-reperfusion injury and on the cardioprotection of ischemic preconditioning in isolated hearts from ovariectomized rats. Ovariectomized rats were treated with 17beta-estradiol (30 micro g/kg/d, s.c.) for 12 weeks. Isolated rat hearts were perfused in the Langendorff mode. Heart rate, coronary flow, left ventricular pressure and its first derivative (+/-LVdp/dtmax) were recorded. Fifteen-min global ischemia and 30-min reperfusion caused a significant decrease of cardiac mechanical function, which were not affected by ovariectomy or estrogen replacement treatment. The isolated hearts in all groups could be preconditioned, and the cardioprotection afforded by preconditioning in the sham-operated rats was greater compared with ovariectomized rats with or without estrogen treatment. These results suggest that long-term estrogen replacement treatment exerts no effect on the inhibition of mechanical function after ischemia-reperfusion, and this study also suggests that estrogen does not affect ischemic preconditioning in isolated hearts of ovariectomized rats.  相似文献   

8.
It has been demonstrated that ischemic preconditioning (IPC) affords protection against the post-ischemic endothelial dysfunction. Here, a hypothesis was tested that IPC, by protecting the endothelium, prevents also the adherence of granulocytes (PMNs) in the post-ischemic heart. Langendorff-perfused guinea-pig hearts were subjected to 30 min ischemia/30 min reperfusion (IR) and peritoneal PMNs were infused between 15 and 25 min of the reperfusion. Acetylcholine (ACh)-induced coronary vasodilatation and nitrite outflow were used to measure endothelial function and coronary flow response to sodium nitroprusside (SNP) served as a measure of endothelium-independent vascular function. The endothelial adherence of PMNs to the coronary microvessels was assessed in histological preparation of the myocardium. In the hearts subjected to IR, ACh-induced vasodilatation and nitrite outflow were reduced by 55% and 69%, respectively, SNP response remained unaltered, and 22% of microvessels were occupied by PMNs, as compared to 2% in the sheam perfused hearts. These alterations were attenuated by IPC (3 x 5 min ischemia). A selectin blocker, sulfatide, prevented IR-induced PMNs adherence and did not affect the responses to ACh and SNP. These data demonstrate that IR leads to the endothelial dysfunction and to the selectin-mediated PMNs adhesion in the isolated guinea-pig and that IPC attenuates both alterations. We speculate that the pro-adhesive effect of IR is secondary to the endothelial injury and that the anti-PMNs action represents a novel cardioprotective mechanism of IPC.  相似文献   

9.
We sought to determine whether brain death-induced catecholamine release preconditions the heart, and if not, whether it precludes further protection by repetitive ischemia or isoflurane. Anesthetized rabbits underwent 30 min of coronary occlusion and 4 h of reperfusion. The effect on infarct size of either no intervention (controls), ischemic preconditioning (IPC), or isoflurane inhalation (Iso) was evaluated with or without previous brain death (BD) induced by subdural balloon inflation. Plasma catecholamine levels were measured at several time points. Although it dramatically increase plasma catecholamine levels, BD failed to reduce infarct size that averaged 0.49 +/- 0.34 without BD versus 0.45 +/- 0.27 g with BD. IPC and Iso, alone as well as after BD, significantly reduced infarct size that averaged 0.11 +/- 0.04, 0.21 +/- 0.15, 0.10 +/- 0.09, and 0.22 +/- 0.10 g in IPC, Iso, BD + IPC, and BD + Iso groups, respectively (means +/- SD, P < 0.05 vs. controls). BD-induced catecholamines "storm" does not precondition the rabbit heart that however retains the ability to be protected by repetition of brief ischemia or isoflurane inhalation.  相似文献   

10.
Glucose in Krebs-Henseleit buffer was presented to isolated Langendorff perfused muskrat and guinea pig hearts that were paced at 240 beats/min. Glucose uptake (amount removed from the perfusion fluid) was 3 times greater in the muskrat hearts than in the guinea pig heart. Glucose oxidation (amount converted to CO2) and oxygen consumption did not differ in the hearts of the two species. When glucose is the only exogenous substrate, isolated muskrat hearts extract more glucose than guinea pig hearts but oxidize similar amounts of glucose and have a similar myocardial oxygen consumption.  相似文献   

11.
The response of rat and guinea-pig hearts to ischemia and reperfusion has been studied in identical conditions. Total 15-min ischemia of isolated rat hearts at 36 degrees C induced an almost 3-fold rise in isovolumic left ventricular diastolic pressure as well as a fall in the developed pressure and heart rate. Guinea-pig hearts, in the same conditions, exhibited a more steep fall in heart rate, with no rise in diastolic pressure. With constant heart rate produced by electrical stimulation at 4 Hz, the difference between two groups remained unchanged, while a more rapid fall in developed pressure in guinea-pig hearts coincided with a more profound fall in extracellular pH and almost a 2-fold rise in extracellular K+ activity. Rapid elimination of K+ and H+ at the early stages of reperfusion was followed by fibrillation in the majority of guinea-pig hearts, while no fibrillation was observed in rat hearts.  相似文献   

12.
Phosphorylation of phospholipids was studied in Langendorff perfused guinea pig hearts subjected to beta-adrenergic stimulation. Hearts were perfused with Krebs-Henseleit buffer containing [32P]Pi and freeze-clamped in a control condition or at the peak of the inotropic response to isoprenaline. 32P incorporation into total phospholipids, individual phospholipids and polyphosphoinositides was analysed in whole tissue homogenates and membranes, enriched in sarcoplasmic reticulum, prepared from the same hearts. Isoprenaline stimulation of the hearts did not result in any significant changes in the levels of phosphate incorporation in the total phospholipid present in cardiac homogenates (11.6 +/- 0.4 nmol of 32P/g for control hearts and 12.4 +/- 0.5 nmol of 32P/g for isoprenaline-treated hearts; n = 6), although there was a significant increase in the degree of phospholipid phosphorylation in sarcoplasmic reticulum (3.5 +/- 0.3 nmol of 32P/mg for control hearts and 6.7 +/- 0.2 nmol of 32P/mg for isoprenaline-treated hearts; n = 6). Analysis of 32P incorporation into individual phospholipids and polyphosphoinositides revealed that isoprenaline stimulation of the hearts was associated with a 2-3-fold increase in the degree of phosphorylation of phosphatidylinositol monophosphate and bisphosphate as well as phosphatidic acid in both cardiac homogenates and sarcoplasmic reticulum membranes. In addition, there was increased phosphate incorporation into phosphatidylinositol in sarcoplasmic reticulum membranes. Thus, perfusion of guinea pig hearts with isoprenaline is associated with increased formation of polyphosphoinositides and these phospholipids may be involved, at least in part, in mediating the effects of beta-adrenergic agents in the mammalian heart.  相似文献   

13.
The aim of the present study was to assess whether the protective effects of ischemic preconditioning (PC) are associated with activation of the mitochondrial ATP-sensitive potassium channels (mitoKATP) and if there is any relationship between the activity of these channels and the mitochondrial permeability transition pore (MPTP) opening in ischemic-reperfused rat hearts under different nutritional conditions. Langendorff-perfused hearts of fed and 24-h fasted rats were exposed to 25 min of no-flow global ischemia plus 30 min of reperfusion. Fasting accelerated functional recovery and attenuated MPTP opening. The mitoKATP blocker, 5-hydroxydecanoic (HD), did not influence functional recovery and MPTP opening induced by ischemia–reperfusion in the fed hearts but partially reversed the beneficial effects of fasting. PC and the mitoKATP opener, diazoxide (DZ), improved functional recovery, preserved cell viability, and inhibited MPTP opening in both fed and fasted hearts. The protection elicited by PC and DZ on contractile recovery and MPTP opening was reversed by HD, which did not affect cell viability. Altogether, these results argue for a role of mitoKATP and its impact on preservation mitochondrial inner membrane permeability as a relevant factor in the improvement of contractile function in the ischemic-reperfused rat heart. They also suggest that the functional protection elicited by PC may be related to this mechanism.  相似文献   

14.
The flexibility of an automated, modified Langendorff perfusion column is illustrated by a series of experiments on isolated rat hearts under the following conditions: normothermia, hypothermia, the addition of a cryoprotective agent - ethylene glycol and cooling to −13°C and −22°C. Successful normothermic perfusions of up to 14 h were achieved. Hypothermia prevented a rise in vascular resistance with time and improved the electrocardiograms. Ethylene glycol was administered during the cooling period to −22°C at temperatures below 23°C. It was removed upon warming and before toxic effects were visible, thus leading to good recovery. By controlling the speed of the perfusate's peristaltic pump, the perfusion pressure was not allowed to exceed a pre-set level. A constant and standard vascular resistance at any selected perfusion temperature, normal heart rate and electrocardiograms were the criteria for normality.  相似文献   

15.
To understand the subcellular basis of contractile failure due to ischemia-reperfusion injury, effects of 20, 60, and 90 min of global ischemia followed by 30 min of reperfusion were examined in isolated guinea pig hearts. Cardiac ultrastructure and function as well as Ca2+ transport abilities of both mitochondrial and microsomal fractions were determined in control, ischemic, and reperfused hearts. Hearts were unable to generate any contractile force after 20 min of ischemia and showed a 75% recovery upon reperfusion. However, there were no significant changes in the subcellular Ca2+ transport in the 20-min ischemic or reperfused hearts. When hearts were made ischemic for 60 and 90 min, the recovery of contractile force on reperfusion was 50 and 7%, respectively. There was a progressive decrease in mitochondrial and microsomal Ca2+ binding and uptake activities after 60 and 90 min of ischemia; these changes were evident at various times of incubation period and at different concentrations of Ca2+. Mitochondrial Ca2+ transport changes were only partially reversible upon reperfusion after 60 and 90 min of ischemia, whereas the microsomal Ca2+ binding, uptake and Ca2+ ATPase activities deteriorated further upon reperfusion of the 90-min ischemic hearts. Ultrastructural changes increased with the duration of the ischemic insult and reperfusion injury was extensive in the 90-min ischemic hearts. These data show that the lack of recovery of contractile function upon reperfusion after a prolonged ischemic insult was accompanied by defects in sarcoplasmic reticulum Ca2+ transporting properties and structural damage.  相似文献   

16.
We investigated the role of the 27-kDa heat shock protein (HSP27) in cardiac protection using Langendorff-perfused rat hearts. After preconditioning (a single episode of 5 min global ischemia followed by 5 min of reperfusion), HSP27 redistributed from the cytosol to the sarcomere and recovery of the contractile function, after 40 min of global ischemia and 50 min of reperfusion, was significantly enhanced. Both SB203580, a p38 MAP kinase inhibitor, and bisindolylmaleimide I, a protein kinase C inhibitor, prevented the effects of preconditioning. Both 2-chloro-N(6)-cyclopentyladenosine (adenosine A1 agonist) and anisomycin (activator of p38 MAP kinase and c-jun N-terminal kinase) mimicked preconditioning. These results suggest that activation of protein kinase C followed by activation of p38 MAP kinase elicits translocation of HSP27 to the sarcomere, a process which may be involved in the cardioprotective mechanism afforded by ischemic preconditioning in rat heart.  相似文献   

17.
E Aasum  T S Larsen 《Cryobiology》1999,38(3):243-249
We examined the effect of hypothermia and rewarming on myocardial function and calcium control in Langendorff-perfused hearts from rat and guinea pig. Both rat and guinea pig hearts demonstrated a rise in myocardial calcium ([Ca]total) in response to hypothermic perfusion (40 min, 10 degrees C), which was accompanied by an increase in left ventricular end diastolic pressure (LVEDP). The elevation in [Ca]total was severalfold higher in guinea pig than in rat hearts, reaching 12.9 +/- 0.8 and 3.1 +/- 0.6 micromol.g dry wt-1, respectively. The rise in LVEDP, however, was comparable in the two species: 62.5 +/- 2.5 (guinea pig) and 52.5 +/- 5.1 mm Hg (rat). Following rewarming, [Ca]total remained elevated in guinea pig, whereas a moderate decline in [Ca]total was observed in the rat (13.6 +/- 1.9 and 2.2 +/- 0.3 micromol.g dry wt-1, respectively). Posthypothermic values of LVEDP were also significantly higher in guinea pig compared to rat hearts (42.5 +/- 6.8 vs 20.5 +/- 5.1 mm Hg, P < 0.027). Furthermore, whereas rat hearts demonstrated a 78 +/- 7% recovery of left ventricular developed pressure, there was only a 15 +/- 7% recovery in guinea pig hearts. Measurements of tissue levels of high energy phosphates and glycogen utilization indicated a higher metabolic requirement in guinea pig than in rat hearts in order to oppose the hypothermia-induced calcium load. Thus, we conclude that isolated guinea pig hearts are more sensitive to a hypothermic insult than rat hearts.  相似文献   

18.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

19.
Acute responses to antigen-antibody interactions (anaphylactic reactions) in isolated guinea pig hearts are reported to include decreases in coronary flow, increases in heart rate, prolongation of impulse propagation, development of arrhythmias, and transient increases followed by substantial decreases in ventricular contractile force. It is not clear from these studies, however, whether all of the changes are direct effects of the mediators released by the antigen-antibody reaction or whether some of them are indirect results of the severe reduction in flow evoked by coronary vasoconstriction. Therefore, the present study was designed to assess cardiac anaphylactic events in isolated hearts of guinea pigs passively sensitized with IgG antibody to ovalbumin under conditions in which coronary perfusion pressure was maintained constant and to compare the responses to those of hearts in which coronary flow was maintained at a constant rate. Our data indicate that when coronary flow decreased during anaphylaxis (constant pressure perfusion), hearts responded to antigen challenge with greater prolongation of the PR interval, duration of arrhythmias, suppression of left ventricular systolic pressure, and release of histamine and adenosine plus inosine into the venous effluent than when coronary flow was maintained during anaphylaxis (constant flow perfusion). The data suggest that maintenance of coronary flow during cardiac anaphylaxis may attenuate the severity of the functional derangement.  相似文献   

20.
The effect of ischemic preconditioning on the free-radical state of isolated rat myocardium fixed by rapid freezing at the 25th min of normothermic total ischemia and the 3rd min of reperfusion was studied by the EPR method. It was shown that EPR spectra registered at -40 degrees C consist of two free-radical signals: of the semireduced forms of ubiquinone and flavine coynzymes. It was found that during ischemia and at the beginning of reperfusion, the preconditioning results in a narrowing of the spectra (as compared with control) due to an increase in the narrow ubisemiquinone EPR signal portion, and a decrease in the total concentration of free-radical centers: by 16% in the case of ischemia, and 23% in the case of reperfusion. It was concluded that in both cases the changes were due to a decrease in the concentration of myocardial flavosemiquinones as a result of ischemic preconditioning. We registered the microvawe power saturation curves for these two stages, which corresponded to control and ischemic preconditioning. In the case of ischemia these dependences had similar shapes; however, in the case of reperfusion they differ from each other due to changes in the relative intensities of the EPR signals from ubisemiquinone and flavosemiquinones in the integral myocardial free-radical spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号