首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress urinary incontinence (SUI) development is strongly correlated with vaginal childbirth, particularly increased duration of the second stage of labor. However, the mechanisms of pelvic floor injury leading to SUI are largely unknown. The aim of this study was to determine the effects of increased duration of vaginal distension (VD) on voiding cystometry, leak point pressure testing, and histology. Sixty-nine virgin female rats underwent VD with an inflated balloon for either 1 or 4 h, while 33 age-matched rats were sham-VD controls. Conscious cystometry, leak point pressure testing, and histopathology were determined 4 days, 10 days, and 6 wk after VD. The increase in abdominal pressure to leakage (LPP) during leak point pressure testing was significantly decreased in both distension groups 4 days after distension, indicative of short-term decreased urethral resistance. Ten days after VD, LPP was significantly decreased in the 4-h but not the 1-h distension group, indicating that a longer recovery time is needed after longer distension duration. Six weeks after VD, LPP was not significantly different from sham-VD values, indicating a return toward normal urethral resistance. In contrast, 6 wk after VD of either duration, the distended rats had not undergone the same increase in voided volume as the sham-VD group, suggesting that some effects of VD do not resolve within 6 wk. Both VD groups demonstrated histopathological evidence of acute injuries and tissue remodeling. In conclusion, this experiment suggests pressure-induced hypoxia as a possible mechanism of injury in vaginal delivery.  相似文献   

2.
The effects of hypercapnia produced by CO2 rebreathing on total pulmonary, supraglottic, and lower airway (larynx and lungs) resistance were determined in eight premature infants [gestational age at birth 32 +/- 3 (SE) wk, weight at study 1,950 +/- 150 g]. Nasal airflow was measured with a mask pneumotachograph, and pressures in the esophagus and oropharynx were measured with a fluid-filled or 5-Fr Millar pressure catheter. Trials of hyperoxic (40% inspired O2 fraction) CO2 rebreathing were performed during quiet sleep. Total pulmonary resistance decreased progressively as end-tidal PCO2 (PETCO2) increased from 63 +/- 23 to 23 +/- 15 cmH2O.l-1.s in inspiration and from 115 +/- 82 to 42 +/- 27 cmH2O.l-1.s in expiration between room air (PETCO2 37 Torr) and PETCO2 of 55 Torr (P less than 0.05). Lower airway resistance (larynx and lungs) also decreased from 52 +/- 22 to 18 +/- 14 cmH2O.l-1.s in inspiration and from 88 +/- 45 to 30 +/- 22 cmH2O.l-1.s in expiration between PETCO2 of 37 and 55 Torr, respectively (P less than 0.05). Resistance of the supraglottic airway also decreased during inspiration from 7.2 +/- 2.5 to 3.6 +/- 2.5 cmH2O.l-1.s and in expiration from 7.6 +/- 3.3 to 5.3 +/- 4.7 cmH2O.l-1.s at PETCO2 of 37 and 55 Torr (P less than 0.05). The decrease in resistance that occurs within the airway in response to inhaled CO2 may permit greater airflow at any level of respiratory drive, thereby improving the infant's response to CO2.  相似文献   

3.
Neonatal calves develop airflow limitation due to chronic hypobaric hypoxia   总被引:1,自引:0,他引:1  
Neonates and infants presenting with pulmonary hypertension and chronic hypoxia often exhibit airway obstruction. To investigate this association, we utilized a system in which neonatal calves are exposed to chronic hypobaric hypoxia and develop severe pulmonary hypertension. For the present study, one of each pair of six age-matched pairs of neonatal calves was continuously exposed to hypobaric hypoxia at 4,500 m (CH); the other remained at 1,500 m. At 2 wk of age, mean pulmonary arterial pressure (MPAP), dynamic lung compliance (Cdyn), resistance (RL), and static respiratory system compliance (Crs) were measured at 4,500 m in both CH and control calves exposed acutely to hypoxia (C). These measurements were repeated after cumulative administrations of nebulized methacholine (MCh). Tissues were removed for histological examination and assessment of bronchial ring contractility to MCh and KCl. After 2 wk of hypobaric hypoxia, MPAP (C 35 +/- 1.7 vs. CH 120 +/- 7 mmHg, P less than 0.001) and RL (C 2.64 +/- 0.16 vs CH 4.99 +/- 0.47 cmH2O.l-1s, P less than 0.001) increased. Cdyn (C 0.100 +/- 0.01 vs. CH 0.082 +/- 0.007 l/cmH2O) and Crs (CH 0.46 +/- 0.003 vs. C 0.59 +/- 0.009 l/cmH2O) were not significantly different. Compared with airways of C calves, airways of CH animals did not exhibit in vivo or in vitro MCh hyperresponsiveness; however, in vitro contractility to KCl of airways from CH animals was significantly increased. Histologically, airways from the CH calves showed increases in airway fibrous tissue and smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The urethral closure mechanism under a stress condition induced by sneezing was investigated in urethane-anesthetized female rats. During sneezing, while the responses measured by microtip transducer catheters in the proximal and middle parts of the urethra increased, the response in the proximal urethra was almost negligible when the bladder response was subtracted from the urethral response or when the abdomen was opened. In contrast, the response in the middle urethra during sneezing was still observed after subtracting the bladder response or after opening the abdomen. These responses in the middle urethra during sneezing were significantly reduced approximately 80% by bilateral transection of the pudendal nerves and the nerves to the iliococcygeous and pubococcygeous muscles but not by transection of the visceral branches of the pelvic nerves and hypogastric nerves. The sneeze leak point pressure was also measured to investigate the role of active urethral closure mechanisms in maintaining total urethral resistance against sneeze-induced urinary incontinence. In sham-operated rats, no urinary leakage was observed during sneeze, which produced an increase of intravesical pressure up to 37 +/- 2.2 cmH2O. However, in nerve-transected rats urinary leakage was observed when the intravesical pressure during sneezing exceeded 16.3 +/- 2.1 cmH2O. These results indicate that during sneezing, pressure increases elicited by reflex contractions of external urethral sphincter and pelvic floor muscles occur in the middle portion of the urethra. These reflexes in addition to passive transmission of increased abdominal pressure significantly contribute to urinary continence mechanisms under a sneeze-induced stress condition.  相似文献   

5.
The diaphragm and abdominal muscles can be recruited during nonrespiratory maneuvers. With these maneuvers, transdiaphragmatic pressures are elevated to levels that could potentially provide a strength-training stimulus. To determine whether repeated forceful nonrespiratory maneuvers strengthen the diaphragm, four healthy subjects performed sit-ups and biceps curls 3-4 days/wk for 16 wk and four subjects served as controls. The maximal transdiaphragmatic pressure was measured at baseline and after 16 wk of training. Maximum static inspiratory and expiratory mouth pressures and diaphragm thickness derived from ultrasound were measured at baseline and 8 and 16 wk. After training, there were significant increases in diaphragm thickness [2.5 +/- 0.1 to 3.2 +/- 0.1 mm (mean +/- SD) (P < 0.001)], maximal transdiaphragmatic pressure [198 +/- 21 to 256 +/- 23 cmH2O (P < 0.02)], maximum static inspiratory pressure [134 +/- 22 to 171 +/- 16 cmH2O (P < 0.002)], maximum static expiratory pressure [195 +/- 20 to 267 +/- 40 cmH2O (P < 0.002)], and maximum gastric pressure [161 +/- 5 to 212 +/- 40 cmH2O (P < 0.03)]. These parameters were unchanged in the control group. We conclude that nonrespiratory maneuvers can strengthen the inspiratory and expiratory muscles in healthy individuals. Because diaphragm thickness increased with training, the increase in maximal pressures is unlikely due to a learning effect.  相似文献   

6.
Current therapies including pharmaceutical intervention and surgery have limited efficacy on stress urinary incontinence (SUI). One type of SUI is due to low intraurethral pressure caused by the disabled contraction of urethral smooth muscle (USM). However, the molecular mechanisms underlying the motility of USM remain unknown. Here, we show that USM represents spontaneous tone after stretching in humans and mice. Deletion of TMEM16A in the smooth muscle of mice abolishes spontaneous urethral tone. Furthermore, ClCa currents and [Ca2+]i in TMEM16ASMKO mice were largely impaired. Inhibitors of ryanodine receptor (RyR), TMEM16A encoded calcium-activated chloride channel (ClCa) and L-type voltage-dependent calcium channel (VDCC) fully prevented spontaneous tone accompanied by a significant decrease of intracellular calcium concentration ([Ca2+]i). In summary, RyR–ClCa–VDCC signaling contributes to spontaneous USM tone. This finding may provide a new promising approach for women with stress SUI who reject surgery.  相似文献   

7.
This article provides a historical perspective on the evolution of theories regarding the pathophysiology of stress urinary incontinence (SUI). The progression of these theories has followed the development of the diagnostic technologies that have provided insight into different aspects of urethral dysfunction. The earliest theories tied SUI to anatomic failure of urethral support. Recognition that anatomic failure impacted the interplay of intra-abdominal pressure and the bladder and urethra led to theories focused on the dynamic interaction between the bladder and urethral pressures. Investigators then began to recognize the importance of urethral sphincteric dysfunction. More recently, investigators have attempted to combine the anatomic and functional etiologies into a consolidated theory. These efforts point to a multi-factorial etiology of SUI. Continuing research has provided new insight into the neurophysiology of urethral function, opening new avenues for tailoring therapy for SUI.  相似文献   

8.
The influence of maturation on extrathoracic airway (ETA) stability during quiet sleep was determined in 13 normal preterm infants of 1.41 +/- 0.14 (SD) kg birth weight and 32 +/- 2 wk estimated gestational age. Studies began in the first week of life and were performed three times at weekly intervals. A drop in intraluminal pressure within the ETA was produced by external inspiratory flow-resistive loading (60 cmH2O.l-1 x s at 1 l/min); an increase in intrinsic resistance, indicating airway narrowing, was sought as a measure of ETA instability. Baseline total pulmonary resistance was not significantly different between weeks 1, 2, and 3 (88 +/- 35, 65 +/- 24, and 61 +/- 17 cmH2O.l-1 x s, respectively) but increased markedly above baseline with loading to 144 +/- 45 cmH2O.l-1.s during week 1 (P < 0.001), 89 +/- 28 cmH2O.l-1 x s at week 2 (P < 0.01), and 74 +/- 25 cmH2O.l-1 x s at week 3 (n = 10). The increment with loading was significantly greater during week 1 than during weeks 2 or 3 (P < 0.02). Similar studies were also done in seven full-term infants in the first week of life to evaluate the influence of gestational maturity on ETA stability. Despite a relatively greater drop in intraluminal pressure within the ETA of term vs. preterm infants with loading (P < 0.001), total pulmonary resistance failed to increase (68 +/- 21 to 71 +/- 32 cmH2O.l-1.s). These data reveal that ETA instability is present in preterm infants at birth and decreases with increasing postnatal age. Full-term neonates, by comparison, display markedly greater ETA stability in the immediate neonatal period.  相似文献   

9.
Background aimsEffective treatment for stress urinary incontinence (SUI) is lacking. This study investigated whether transplantation of adipose tissue-derived stem cells (ADSC) can treat SUI in a rat model.MethodsRats were induced to develop SUI by postpartum vaginal balloon dilation and bilateral ovariectomy. ADSC were isolated from the peri-ovary fat, examined for stem cell properties, and labeled with thymidine analog BrdU or EdU. Ten rats received urethral injection of saline as a control. Twelve rats received urethral injection of EdU-labeled ADSC and six rats received intravenous injection of BrdU-labeled ADSC through the tail vein. Four weeks later, urinary voiding function was assessed by conscious cystometry. The rats were then killed and their urethras harvested for tracking of ADSC and quantification of elastin, collagen and smooth muscle contents.ResultsCystometric analysis showed that eight out 10 rats in the control group had abnormal voiding, whereas four of 12 (33.3%) and two of six (33.3%) rats in the urethra-ADSC and tail vein-ADSC groups, respectively, had abnormal voiding. Histologic analysis showed that the ADSC-treated groups had significantly higher elastin content than the control group and, within the ADSC-treated groups, rats with normal voiding pattern also had significantly higher elastin content than rats with voiding dysfunction. ADSC-treated normal-voiding rats had significantly higher smooth muscle content than control or ADSC-treated rats with voiding dysfunction.ConclusionsTransplantation of ADSC via urethral or intravenous injection is effective in the treatment and/or prevention of SUI in a pre-clinical setting.  相似文献   

10.
Active, nonanesthetized, tracheotomized rabbits were subjected to continuous positive airway pressure (CPAP) for 4 days to determine the effects of chronic mechanical strain on lung and airway function. Rabbits were maintained for 4 days at a CPAP of 6 cmH(2)O (high CPAP), at a CPAP of 0 cmH(2)O (low CPAP), or without tracheostomy (no CPAP). After treatment with CPAP, changes in respiratory resistance in response to increasing concentrations of inhaled ACh were measured during mechanical ventilation to evaluate respiratory system responsiveness in vivo. Intraparenchymal bronchial segments were isolated from the lungs of all animals to evaluate airway smooth muscle responsiveness and bronchial compliance in vitro. Rabbits maintained for 4 days at high CPAP demonstrated significantly lower responsiveness to ACh compared with rabbits that were maintained at low CPAP or with no CPAP. Airways isolated from the lungs of animals subjected to the chronic application of high CPAP were also less responsive to ACh in vitro than the airways isolated from animals subjected to low CPAP or no CPAP. The persistence of the decreased responsiveness in the excised airway tissues suggests that the decreased respiratory system responsiveness observed in vivo results primarily from direct effects on the airways. The results demonstrate that the application of prolonged mechanical strain in vivo can reduce airway reactivity.  相似文献   

11.
Wu G  Song Y  Zheng X  Jiang Z 《Tissue & cell》2011,43(4):246-253
We aimed to investigate the application of adipose-derived stromal cells in the treatment of stress urinary incontinence (SUI). Animal models of stress urinary incontinence were established with Sprague-Dawley female rats by complete cutting of the pudendal nerve. Rat adipose-derived stromal cells were isolated, cultured and successfully transplanted into animal models. Effects of stem cell transplantation were evaluated through urodynamic testing and morphologic changes of the urethra and surrounding tissues before and after transplantation. Main urodynamic outcome measures were measured. Intra-bladder pressure and leak point pressure were measured during filling phase. Morphologic examinations were performed. Transplantation of adipose-derived stem cells significantly strengthened local urethral muscle layers and significantly improved the morphology and function of sphincters. Urodynamic testing showed significant improvements in maximum bladder capacity, abdominal leak point pressure, maximum urethral closure pressure, and functional urethral length. Morphologic changes and significant improvement in urination control were consistent over time. It was concluded that periurethral injection of adipose-derived stromal cells improves function of the striated urethral sphincter, resulting in therapeutic effects on SUI. Reconstruction of the pelvic floor through transplantation of adipose-derived cells is a minimally invasive and effective treatment for SUI.  相似文献   

12.
Reduction of uterine perfusion pressure (RUPP) during late pregnancy has been suggested to trigger increases in renal vascular resistance and lead to hypertension of pregnancy. We investigated whether the increased renal vascular resistance associated with RUPP in late pregnancy reflects increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and contraction of renal arterial smooth muscle. Single smooth muscle cells were isolated from renal interlobular arteries of normal pregnant Sprague-Dawley rats and a rat model of RUPP during late pregnancy. The cells were loaded with fura 2 and both cell length and [Ca(2+)](i) were measured. In cells of normal pregnant rats incubated in Hanks' solution (1 mM Ca(2+)), ANG II (10(-7) M) caused an initial increase in [Ca(2+)](i) to 414 +/- 13 nM, a maintained increase to 149 +/- 8 nM, and 21 +/- 1% cell contraction. In RUPP rats, the initial ANG II-induced [Ca(2+)](i) (431 +/- 18 nM) was not different from pregnant rats, but both the maintained [Ca(2+)](i) (225 +/- 9 nM) and cell contraction (48 +/- 2%) were increased. Membrane depolarization by 51 mM KCl and the Ca(2+) channel agonist BAY K 8644 (10(-6) M), which stimulate Ca(2+) entry from the extracellular space, caused maintained increases in [Ca(2+)](i) and cell contraction that were greater in RUPP rats than control pregnant rats. In Ca(2+)-free (2 mM EGTA) Hanks' solution, the ANG II- and caffeine (10 mM)-induced [Ca(2+)](i) transient and cell contraction were not different between normal pregnant and RUPP rats, suggesting no difference in Ca(2+) release from the intracellular stores. The enhanced maintained ANG II-, KCl- and BAY K 8644-induced [Ca(2+)](i) and cell contraction in RUPP rats compared with normal pregnant rats suggest enhanced Ca(2+) entry mechanisms of smooth muscle contraction in resistance renal arteries and may explain the increased renal vascular resistance associated with hypertension of pregnancy.  相似文献   

13.
The intracellular mechanisms underlying enhanced myogenic contraction (MC) in coronary resistance arteries (CRAs) from exercise-trained (EX) pigs have not been established. The purpose of this study was to test the hypothesis that exercise-induced alterations in protein kinase C (PKC) signaling underlie enhanced MC. Furthermore, we sought to determine whether modulation of intracellular Ca(2+) signaling by PKC underlies enhanced MC in EX animals. Male Yucatan miniature swine were treadmill trained (n = 7) at approximately 75% of maximal O(2) uptake for 16 wk (6 miles/h, 60 min) or remained sedentary (SED, n = 6). Diameter measurements in response to intraluminal pressure (60, 75, and 90 cmH(2)O) or 60 mM KCl were determined in single, cannulated CRAs ( approximately 100 microm ID) with and without the PKC inhibitor chelerythrine (CE, 1 microM). Confocal imaging of Ca(2+) signaling [myogenic Ca(2+) (Ca(m))] was also performed in CRAs of similar internal diameter after abluminal loading of the Ca(2+) indicator dye fluo 4 (1 microM, 37 degrees C, 30 min). We observed significantly greater MC in CRAs isolated from EX than from SED animals at 90 cmH(2)O, as well as greater reductions in MC after CE at all pressures studied. At intraluminal pressures of 75 and 90 cmH(2)O, CE produced greater decreases in Ca(m) in CRAs from EX than from SED animals (64% vs. 25%, P < 0.05). Inhibition of KCl constriction and Ca(m) by CE was also greater in EX animals (P < 0.05). Western blotting revealed significant increases in Ca(2+)-dependent PKC-alpha ( approximately 50%) but not Ca(2+)-independent PKC-epsilon levels in CRAs isolated from EX animals (P < 0.05). We also observed significant group differences in phosphorylated PKC-alpha levels. Finally, voltage-gated Ca(2+) current (VGCC) was effectively blocked by CE, bisindolylmaleimide, and staurosporine in isolated smooth muscle cells from CRAs, providing evidence for a mechanistic link between VGCCs and PKC in our experimental paradigm. These results suggest that enhanced MC in CRAs from EX animals involves PKC-dependent modulation of intracellular Ca(2+), including regulation of VGCCs.  相似文献   

14.
We have determined the mechanical effects of immersion to the neck on the passive chest wall of seated upright humans. Repeated measurements were made at relaxed end expiration on four subjects. Changes in relaxed chest wall configuration were measured using magnetometers. Gastric and esophageal pressures were measured with balloon-tipped catheters in three subjects; from these, transdiaphragmatic pressure was calculated. Transabdominal pressure was estimated using a fluid-filled, open-tipped catheter referenced to the abdomen's exterior vertical surface. We found that immersion progressively reduced mean transabdominal pressure to near zero and that the relaxed abdominal wall was moved inward 3-4 cm. The viscera were displaced upward into the thorax, gastric pressure increased by 20 cmH2O, and transdiaphragmatic pressure decreased by 10-15 cmH2O. This lengthened the diaphragm, elevating the diaphragmatic dome 3-4 cm. Esophageal pressure became progressively more positive throughout immersion, increasing by 8 cmH2O. The relaxed rib cage was elevated and expanded by raising water from hips to lower sternum; this passively shortened the inspiratory intercostals and the accessory muscles of inspiration. Deeper immersion distorted the thorax markedly: the upper rib cage was forced inward while lower rib cage shape was not systematically altered and the rib cage remained elevated. Such distortion may have passively lengthened or shortened the inspiratory muscles of the rib cage, depending on their location. We conclude that the nonuniform forcing produced by immersion provides unique insights into the mechanical characteristics of the abdomen and rib cage, that immersion-induced length changes differ among the inspiratory muscles according to their locations and the depth of immersion, and that such length changes may have implications for patients with inspiratory muscle deficits.  相似文献   

15.
We examined the pulmonary response to bone marrow embolism in untreated and indomethacin-treated goats. Pulmonary arterial pressure increased by 15 cmH2O after bone marrow infusion, reaching a peak of 37.2 then stabilizing at greater than 30 cmH2O in the control group. In the treated group it increased by 4.3 cmH2O from a base line of 18.5 cmH2O but had returned to base line by 6 h. Lymph flow increased in the control group from a base line of 7.3 ml/h to a peak of 22.4 ml/h and remained near that level. It increased from a base line of 6.4 ml/h to a peak of 9.8 ml/h in the treated group and remained close to that value. The lymph-to-plasma protein ratio was little changed throughout the experiment. Cardiac output decreased by 1.2 l/min in the control group but was unchanged from base line in the treated group. Systemic arterial pressure was similar in both groups of animals. We conclude that indomethacin prevents the pulmonary hypertension seen after bone marrow infusion and protects against some of the increased permeability.  相似文献   

16.
Dynamics of breathing in the hypoxic awake lamb   总被引:1,自引:0,他引:1  
Newborn mammals respond to hypoxia with an immediate hyperventilation that is rapidly dampened. Changes in mechanical properties of the respiratory system during hypoxia have been considered an important reason for this fall in minute ventilation (VE). We have studied the dynamic mechanical behavior of the respiratory system in eight unanesthetized intact newborn lambs (mean age 2 days) during normoxia and hypoxia (FIO2 = 0.08). Mouth pressure (P), airflow (V), and volume (V) were recorded while lambs were breathing through a leak-proof face mask and a pneumotachograph. Active compliance (C') and resistance (R') of the respiratory system were computed from P developed during an inspiratory effort against airway closure at end expiration and V and V of the preceding breaths. Tidal expiratory V-V curves were analyzed to estimate the elevation in functional residual capacity (FRC) over resting volume (Vr). After hypoxia, there was an immediate increase in VE in the first 2 min, from 0.49 to 1.13 l.kg-1.min-1, followed by a rapid decrease to 0.80. After 8 min of hypoxia, C' was unchanged. The inspiratory R' decreased during hypoxia, probably reflecting a drop in inspiratory laryngeal resistance. The expiratory V-V curves during hypoxia showed considerable braking, often with a double peak in expiratory V. This pattern was only occasionally seen during normoxia. In animals with a linear segment of the expiratory V-V curves the FRC-Vr difference could be calculated and averaged 1.93 ml/kg during normoxia and 3.47 during hypoxia. The recoil P of the respiratory system at end expiration was 0.75 cmH2O during normoxia vs. 1.63 cmH2O during hypoxia (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Although the role played by the caudal ventrolateral medulla in the regulation of the cardiovascular system has been extensively investigated, little is known about the role played by this area in the regulation of airway caliber. Therefore, in alpha-chloralose-anesthetized dogs, we used both electrical and chemical means to stimulate the caudal ventrolateral medulla while we monitored changes in total lung resistance breath by breath. We found that electrical stimulation (25 microA) of 26 sites in this area significantly decreased total lung resistance from 7.1 +/- 0.4 to 5.7 +/- 0.3 cmH2O.1-1.s (P less than 0.001). The bronchodilation evoked by electrical stimulation was unaffected by beta-adrenergic blockade but was abolished by cholinergic blockade. In addition, chemical stimulation of seven sites in the caudal ventrolateral medulla with microinjections of DL-homocysteic acid (0.2 M; 66 nl), which stimulates cell bodies but not fibers of passage, also decreased total lung resistance from 8.3 +/- 1.1 to 6.5 +/- 0.8 cmH2O.l-1.s (P less than 0.01). In contrast, microinjections of DL-homocysteic acid into the nucleus ambiguus (n = 6) increased total lung resistance from 7.5 +/- 0.5 to 9.2 +/- 0.4 cmH2O.l-1.s (P less than 0.05). We conclude that the caudal ventrolateral medulla contains a pool of cell bodies whose excitation causes bronchodilation by withdrawing cholinergic input to airway smooth muscle.  相似文献   

18.
Many studies that demonstrate an increase in airway smooth muscle in asthmatic patients rely on the assumption that bronchial internal perimeter (P(i)) or basement membrane perimeter (P(bm)) is a constant, i.e., not affected by fixation pressure or the degree of smooth muscle shortening. Because it is the basement membrane that has been purported to be the indistensible structure, this study examines the assumption that P(bm) is not affected by fixation pressure. P(bm) was determined for the same human airway segment (n = 12) fixed at distending pressures of 0 cmH(2)O and 21 cmH(2)O in the absence of smooth muscle tone. P(bm) for the segment fixed at 0 cmH(2)O was determined morphometrically, and the P(bm) for the same segment, had the segment been fixed at 21 cmH(2)O, was predicted from knowing the luminal volume and length of the airway when distended to 21 cmH(2)O (organ bath-derived P(i)). To ensure an accurate transformation of the organ bath-derived P(i) value to a morphometry-derived P(bm) value, had the segment been fixed at 21 cmH(2)O, the relationship between organ bath-derived P(i) and morphometry-derived P(bm) was determined for five different bronchial segments distended to 21 cmH(2)O and fixed at 21 cmH(2)O (r(2) = 0.99, P < 0.0001). Mean P(bm) for bronchial segments fixed at 0 cmH(2)O was 9.4 +/- 0.4 mm, whereas mean predicted P(bm), had the segments been fixed at 21 cmH(2)O, was 14.1 +/- 0.5 mm (P < 0.0001). This indicates that P(bm) is not a constant when isolated airway segments without smooth muscle tone are fixed distended to 21 cmH(2)O. The implication of these results is that the increase in smooth muscle mass in asthma may have been overestimated in some previous studies. Therefore, further studies are required to examine the potential artifact using whole lungs with and without abolition of airway smooth muscle tone and/or inflation.  相似文献   

19.
Currently, there are no approved medications for the treatment of stress urinary incontinence (SUI) in the United States. The effectiveness of duloxetine in the treatment of SUI is linked to its inhibition of presynaptic neuronal reuptake of serotonin and norepinephrine in the central nervous system, resulting in elevated levels of serotonin and norepinephrine in the synaptic cleft. In animal studies, this agent leads to an increase in nerve stimulation to the urethral striated sphincter muscle. A similar mechanism in women is believed to result in stronger urethral contractions, with improved sphincter tone during urine storage and physical stress. In 3 randomized, placebo-controlled clinical trials, patients receiving duloxetine had a statistically significant and clinically relevant reduction in the number of incontinence episodes and a corresponding improvement in quality of life. If this use of duloxetine is approved by the U.S. Food and Drug Administration, as it has been by the European regulatory agencies, it will be the first drug indicated for the treatment of SUI. This pharmacologic therapy is an additional option for women and is likely to become an integral component of patient management.  相似文献   

20.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号