首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wide range of activities are induced by Lys when introduced at C-terminus of the delta-opioid Dmt-Tic pharmacophore through the alpha-amine group, including: improved delta-antagonism, mu-agonism and mu-antagonism. Here we report the synthesis of a new series of compounds with the general formula H-Dmt-Tic-NH-(CH(2))(4)-CH(R)-R' (R=-NH(2), -NH-Ac, -NH-Z; R'=CO-NH-Ph, -CO-NH-CH(2)-Ph, -Bid) in which Lys is linked to Dmt-Tic through its side-chain amine group. All new compounds (1-9) displayed potent and selective delta-antagonism (MVD, pA(2)=7.81-8.27), which was independent of the functionalized alpha-amine and carboxylic groups of C-terminal Lys. This behaviour suggests a direct application as a prototype intermediate, such as Boc-Dmt-Tic-epsilon-Lys(Z)-OMe, which could be successfully applied in the synthesis (after Z or methyl ester removal) of unique designed multiple ligands containing the pharmacophore of the quintessential delta-antagonist Dmt-Tic and another opioid or biologically active non-opioid ligand.  相似文献   

2.
The discovery of the prototype delta opioid antagonists TIPP (H-Tyr-Tic-Phe-Phe-OH) and TIP (H-Tyr-Tic-Phe-OH) in 1992 was followed by extensive structure-activity relationship studies, leading to the development of analogues that are of interest as pharmacological tools or as potential therapeutic agents. Stable TIPP-derived delta opioid antagonists with subnanomolar delta receptor binding affinity and extraordinary delta receptor selectivity include TIPP[Psi] (H-Tyr-TicPsi[CH(2)NH]Phe-Phe-OH] and TICP[Psi] (H-Tyr-TicPsi[CH(2)NH]Cha-Phe-OH); Cha: cyclohexylalanine), which are widely used in opioid research. Theoretical conformational analyses in conjunction with the pharmacological characterization of conformationally constrained TIPP analogues led to a definitive model of the receptor-bound conformation of H-Tyr-Tic-(Phe-Phe)-OH-related delta opioid antagonists, which is characterized by all-trans peptide bonds. Further structure-activity studies revealed that the delta antagonist vs delta agonist behavior of TIP(P)-derived compounds depended on very subtle structural differences in diverse locations of the molecule and suggested a delta receptor model involving a number of different inactive receptor conformations. A further outcome of these studies was the identification of a new class of potent and very selective dipeptide delta agonists of the general formula H-Tyr-Tic-NH-X (X = arylalkyl), which are of interest for drug development because of their low molecular weight and lipophilic character. Most interestingly, TIPP analogues containing a C-terminal carboxamide group displayed a mixed mu agonist/delta antagonist profile, and thus were expected to be analgesics with a low propensity to produce tolerance and physical dependence. This turned out to be the case with the TIPP-derived mu agonist/delta antagonist DIPP-NH(2)[Psi] (H-Dmt-TicPsi[CH(2)NH]Phe-Phe-NH(2)); Dmt: 2',6'- dimethyltyrosine).  相似文献   

3.
Here we evaluated how the interchange of the amino acids 2′,6′-dimethyl-l-tyrosine (Dmt), 2′,6′-difluoro-l-tyrosine (Dft), and tyrosine in position 1 can affect the pharmacological characterization of some reference opioid peptides and pseudopeptides. Generally, Dft and Tyr provide analogues with a similar pharmacological profile, despite different pKa values. Dmt/Tyr(Dft) replacement gives activity changes depending on the reference opioid in which the modification was made. Whereas, H-Dmt-Tic-Asp1-Bid is a potent and selective δ agonist (MVD, IC50 = 0.12 nM); H-Dft-Tic-Asp1-Bid and H-Tyr-Tic-Asp1-Bid are potent and selective δ antagonists (pA2 = 8.95 and 8.85, respectively). When these amino acids are employed in the synthesis of deltorphin B and its Dmt1 and Dft1 analogues, the three compounds maintain a very similar δ agonism (MVD, IC50 0.32–0.53 nM) with a decrease in selectivity relative to the Dmt1 analogue. In the less selective H-Dmt-Tic-Gly1-Bid the replacement of Dmt with Dft and Tyr retains the δ agonism but with a decrease in potency. Antagonists containing the Dmt-Tic pharmacophore do not support the exchange of Dmt with Dft or Tyr.  相似文献   

4.
BACKGROUND: Tyr-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) and Tyr-Tic-Ala were the first peptides with delta opioid antagonist activity lacking Phe, considered essential for opioid activity based on the N-terminal tripeptide sequence (Tyr-D-Xaa-Phe) of amphibian skin opioids. Analogs were then designed to restrain the rotational flexibility of Tyr by the substitution of 2,6-dimethyl-L-tyrosine (Dmt). MATERIALS AND METHODS: Tyr and Dmt peptides were synthesized by solid phase and solution methods using Fmoc technology or condensing Boc-Dmt-OH or Boc-Tyr(But)-OH with H-L-Tic-OBut or H-D-Tic-OBut, respectively. Peptides were purified (> 99%) by HPLC and characteristics determined by 1H-NMR, FAB-MS, melting point, TLC, and amino acid analyses. RESULTS: H-Dmt-Tic-OH had high affinity (Ki delta = 0.022 nM) and extraordinary selectivity (Ki mu/Ki delta = 150,000); H-Dmt-Tic-Ala-OH had a Ki delta = 0.29 nM and delta selectivity = 20,000. Affinity and selectivity increased 8700- and 1000-fold relative to H-Tyr-Tic-OH, respectively. H-Dmt-Tic-OH and H-Dmt-Tic-NH2 fitted one-site receptor binding models (eta = 0.939-0.987), while H-Dmt-Tic-ol, H-Dmt-Tic-Ala-OH and H-Dmt-Tic-Ala-NH2 best fitted two-site models (eta = 0.708-0.801, F 18.9-26.0, p < 0.0001). Amidation increased mu affinity by 10- to 100-fold and acted synergistically with D-Tic2 to reverse selectivity (delta-->mu). Dmt-Tic di- and tripeptides exhibited delta antagonist bioactivity (Ke = 4-66 nM) with mouse vas deferens and lacked agonist mu activity (> 10 microM) in guinea-pig ileum preparations. Dmt-Tic analogs weakly interacted with kappa receptors in the 1 to > 20 microM range. CONCLUSIONS: Dmt-Tic opioidmimetic peptides represent a highly potent class of opioid peptide antagonists with greater potency than the nonopioid delta antagonist naltrindole and have potential application as clinical and therapeutic compounds.  相似文献   

5.
A series of Dmt-Tic analogues with substitution on the Tic aromatic ring has been synthesized and evaluated for opioid receptor affinity and activation. Incorporation of large hydrophobic groups at position 7 of Tic did not greatly alter the delta opioid receptor binding affinities of the dipeptides whereas substitution at position 6 substantially diminished their affinity. These modified Dmt-Tic peptides showed binding affinities as low as 2.5 nM with up to 500-fold selectivity for the delta versus mu opioid receptor and proved to be delta receptor antagonists.  相似文献   

6.
The change of selectivity and the induction of antagonism by the insertion of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the second position of several opioid peptides have led to the interpretation of Tyr-Tic as a specific message domain for delta-opioid antagonists and to the discovery of dipeptides with substantial opioid activity. Selectivity and activity increase enormously when Tyr is substituted by 2',6'-dimethyl tyrosine (Dmt), hinting that the side chain of Dmt fits a hydrophobic cavity of the receptor very tightly and precisely. We have investigated the specificity of this fit by systematic changes of the substituents on the aromatic ring of ryr. Mono- and disubstitutions different from 2',6'- invariably lead to catastrophic decreases of activity. The only substitution compatible with retention of substantial antagonism is 2-methyl. An analysis of the conformational properties of all analogues reveals that substitutions do not affect the global shape of the molecule significantly. Accordingly, it is possible to use the shape of the different side chains to map the hydrophobic cavity of the receptor. The resulting complementary image is funnel shaped.  相似文献   

7.
Dansylated analogues of the potent and selective micro opioid peptide agonist [Dmt(1)]DALDA (H-Dmt-D-Arg-Phe-Lys-NH(2); Dmt = 2',6'-dimethyltyrosine) were prepared either by substitution of N(beta)-dansyl-alpha,beta-diaminopropionic acid or N(epsilon)-dansyllysine for Lys(4), or by attachment of a dansyl group to the C-terminal carboxamide function via a linker. All three analogues displayed high micro agonist potency in vitro and the C-terminally dansylated one retained significant micro receptor selectivity. The three analogues showed interesting differences in their fluorescence emission maxima and quantum yields, indicating that the dansyl group in two of them was engaged in intramolecular hydrophobic interactions. These dansylated [Dmt(1)]DALDA analogues represent valuable tools for binding studies, cellular uptake and intracellular distribution studies, and tissue distribution studies.  相似文献   

8.
The dimerization and trimerization of the Dmt-Tic, Dmt-Aia and Dmt-Aba pharmacophores provided multiple ligands which were evaluated in vitro for opioid receptor binding and functional activity. Whereas the Tic- and Aba multimers proved to be dual and balanced δ/μ antagonists, as determined by the functional [S35]GTPγS binding assay, the dimerization of potent Aia-based ‘parent’ ligands unexpectedly resulted in substantial less efficient receptor binding and non-active dimeric compounds.  相似文献   

9.
Structural aspects of agonism and antagonism in the oestrogen receptor   总被引:2,自引:0,他引:2  
We have determined the three-dimensional structures of both alpha- and beta-forms of the ligand-binding domain of the oestrogen receptor (ER) in complexes with a range of receptor agonists and antagonists. Here, we summarize how these structures provide both an understanding of the ER's distinctive pharmacophore and a rationale for its ability to bind a diverse range of chemically distinct compounds. In addition, these studies provide a unique insight into the mechanisms that underlie receptor activation, as well as providing a structural basis for the antagonist action of molecules, such as raloxifene.  相似文献   

10.
H-Dmt-D-Arg-Phe-Lys-NH2 (Dmt=2',6'-dimethyltyrosine) ([Dmt1] DALDA) is a highly potent and selective micro opioid peptide agonist capable of producing an antinociceptive effect after systemic administration. Fluorescent analogues of [Dmt1] DALDA containing either beta-dansyl-L-alpha,beta-diaminopropionic acid [Dap(dns)] or beta-anthraniloyl-L-alpha,beta-diaminopropionic acid [Dap(atn)] in place of Lys4 were synthesized. Both analogues retained subnanomolar mu opioid receptor binding affinity, very high mu opioid agonist activity in the guinea pig ileum assay and extraordinarily high antinociceptive activity in the mouse tail-flick test (intrathecal administration). The maxima of the fluorescence emission spectra recorded in Tris-HCl buffer (pH 6.6) indicated a completely aqueous environment of the fluorophore in both peptides. The high fluorescence quantum yield (phi=0.358) of the [Dap(atn)4] analogue was particularly remarkable. These fluorescent [Dmt1] DALDA analogues represent valuable pharmacological tools for various applications, including studies on the binding to receptors and other biopolymers, cellular uptake and intracellular distribution, and tissue distribution.  相似文献   

11.
Replacement of the constrained phenylalanine analogue 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic) in the opioid Dmt-Tic-Gly-NH-Bn scaffold by the 4-amino-1,2,4,5-tetrahydro-indolo[2,3-c]azepin-3-one (Aia) and 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffolds has led to the discovery of novel potent μ-selective agonists (Structures 5 and 12) as well as potent and selective δ-opioid receptor antagonists (Structures 9 and 15). Both stereochemistry and N-terminal N,N-dimethylation proved to be crucial factors for opioid receptor selectivity and functional bioactivity in the investigated small peptidomimetic templates. In addition to the in vitro pharmacological evaluation, automated docking models of Dmt-Tic and Dmt-Aba analogues were constructed in order to rationalize the observed structure–activity data.  相似文献   

12.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

13.
To develop novel inhibitors of P-glycoprotein (P-gp), dimeric peptides related to an opioid peptide containing the Dmt-Tic pharmacophore were synthesized and their P-gp inhibitory activities were analyzed. Of the 30 analogs synthesized, N(α),N(ε)-[(CH(3))(2)Mle-Tic](2)Lys-NH(2) and its D-Lys analog were found to exhibit potent P-gp inhibitory activity, twice that of verapamil, in doxorubicin-resistant K562 cells. Structure-activity studies indicated that the correct hydrophobicity and spacer length between two aromatic rings are important structural elements in this series of analogs for inhibition of P-gp.  相似文献   

14.
A structurally unique and new class of opioid receptor antagonists (OpRAs) that bear no structural resemblance with morphine or endogenous opioid peptides has been discovered. A series of carboxamido-biaryl ethers were identified as potent receptor antagonists against mu, kappa and delta opioid receptors. The structure-activity relationship indicated para-substituted aryloxyaryl primary carboxamide bearing an amine tether on the distal phenyl ring was optimal for potent in vitro functional antagonism against three opioid receptor subtypes.  相似文献   

15.
The development of novel delta opioid antagonists and delta opioid agonists structurally derived from the prototype delta antagonist TIPP (H-Tyr-Tic-Phe-Phe-OH), is reviewed. Both delta antagonists and delta agonists with extraordinary potency and unprecedented delta receptor selectivity were discovered. Some of them are already widely used as pharmacological tools and are also of interest as potential therapeutic agents for use in analgesia. The results of the performed structure-activity studies revealed that the delta antagonist versus delta agonist behavior of this class of compounds depended on very subtle structural differences in diverse locations of the molecule. These observations can be best explained with a receptor model involving a number of different inactive and active receptor conformations.  相似文献   

16.
We have identified compound 1 as a novel ligand for opioid and melanocortin (MC) receptors, which is derived from the overlapping of a well known structure for the delta opioid receptor, 2,6-dimethyltyrosine (Dmt)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic), and a small molecule for the MC receptor, Tic-DPhe(p-Cl)-piperidin-4-yl-N-phenyl-propionamide. Ligand 1 showed that there is an overlapping pharmacophore between opioid and MC receptors through the Tic residue. The ligand displayed high biological activities at the delta opioid receptor (Ki = 0.38 nM in binding assay, EC(50) = 0.48 nM in GTP-gamma-S binding assay, IC(50) = 74 nM in MVD) as an agonist instead of an antagonist and showed selective binding affinity (IC(50) = 2.3 muM) at the MC-3 receptor rather than at the MC-5 receptor. A study of the structure-activity relationships demonstrated that the residues in positions 2, 3, and the C-terminus act as a pharmacophore for the MC receptors, and the residues in positions 1 and 2 act as a pharmacophore for the opioid receptors. Thus, this structural construct can be used to prepare chimeric structures with adjacent or overlapping pharmacophores for opioid and MC receptors.  相似文献   

17.
Pharmacophore queries from previously known potent selective A3 antagonists were generated by Chem-X. These queries were used to search a pharmacophore database of diverse compounds (CNS-Set). In vitro assays of 186 'hits' yielded over 30 active compounds, for four adenosine receptor subtypes. This search strategy may also be applicable to the discovery of new ligands via receptor homology data.  相似文献   

18.
The Dmt-Tic pharmacophore exhibits potent δ-opioid receptor antagonism. Analogues with substitutions in the second pharmacophore with (1, 1′) or without a COOH function (2–9) were synthesized: several had high δ affinity (1′, 2, 7, and 9), but exhibited low to non-selectivity toward μ receptors similar to H-Dmt-Tic-amide and H-Dmt-Tic-ol. Functional bioactivity indicated high δ antagonism (pA2 7.4–7.9) (1′, 2, and 9) and modest μ agonism, pEC50 (6.1–6.3) (1′, 2, 8, and 9), but with Emax values analogous to dermorphin. These Dmt-Tic analogues with mixed δ antagonist/μ agonist properties would appear to be better candidates as analgesics than pure μ agonists.  相似文献   

19.
Highly selective opioid receptor antagonists are essential pharmacological probes in opioid receptor structural characterization and opioid agonist functional studies. Currently, there is no highly selective, nonpeptidyl and reversible mu opioid receptor antagonist available. Among a series of naltrexamine derivatives that have been designed and synthesized, two compounds, NAP and NAQ, were previously identified as novel leads for this purpose based on their in vitro and in vivo pharmacological profiles. Both compounds displayed high binding affinity and selectivity to the mu opioid receptor. To further study the interaction of these two ligands with the three opioid receptors, the recently released opioid receptor crystal structures were employed in docking studies to further test our original hypothesis that the ligands recognize a unique ‘address’ domain in the mu opioid receptor involving Trp318 that facilitates their selectivity. These modeling results were supported by site-directed mutagenesis studies on the mu opioid receptor, where the mutants Y210A and W318A confirmed the role of the latter in binding. Such work not only enriched the ‘message–address’ concept, also facilitated our next generation ligand design and development.  相似文献   

20.
Three-dimensional pharmacophore models of human adenosine receptor A2A antagonists were developed based on 23 diverse compounds selected from a large number of A2A antagonists. The best pharmacophore model, Hypo1, contained five features: one hydrogen bond donor , three hydrophobic points and one ring aromatic. Its correlation coefficient, root mean square deviation, and cost difference values were 0.955, 0.921 and 84.4, respectively, suggested that the Hypo1 model was reasonable and reliable. This model was validated by three methods: a test set of 106 diverse compounds, a simulated virtual screening, and superimposition with the crystal structure of A2A receptor. The results showed that Hypo1 was not only in agreement with the A2A crystal structure and literature reports, but also well identified active A2A antagonists from the virtual database. This methodology provides helpful information and a robust tool for the discovery of potent A2A antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号