首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vitamin E and probucol are well-known antioxidants that prevent cells from the oxidative stress, which is a risk factor of atherosclerosis. Male rabbits were fed either 0.03% vitamin E or 0.05% probucol in a 0.5% high-cholesterol (HC) diet for 8 weeks. Vitamin E and probucol significantly suppressed an increase in plasma total-cholesterol (total-C) and low-density lipoprotein cholesterol compared to HC-control group. However, plasma high-density lipoprotein-cholesterol (HDL-C) and HDL-C/total-C ratio levels and plasma paraoxonase activity were only significantly higher in vitamin E group after 8 weeks. Hepatic ACAT activity was significantly lower in both vitamin E and probucol groups than in HC-control group, while HMG-CoA reductase activity was the highest only in the probucol group. Total fecal sterol content was significantly higher in probucol and vitamin E groups than in the two control groups. Some atherogenic signs were discovered in the aortic fatty streak of HC-control group, yet not in other groups. Hepatic mRNA expressions of apo B-100 and apo C-III were significantly lower in probucol group than in other groups. Vitamin E supplementation was found to alter the plasma HDL-C-related factors; meanwhile, probucol supplementation was very effective in enhancing cholesterol metabolism, except for a negative effect that reduced plasma HDL-C concentration.  相似文献   

3.
Intermedin (IMD) is a recently discovered vasodilator peptide. We studied the role of IMD in the pathogenesis of atherosclerosis by investigating the ability of exogenous IMD to alter lipid profiles and ameliorate the development of atherogenic-diet induced atherosclerosis in ApoE−/− mice. Ten of eight-week-old male C57BL/6J mice were as control. Thirty of eight-week-old male ApoE−/− mice were fed with an atherogenic diet for 18 weeks. After feeding atherogenic diet for 12 weeks, the mice were equally and randomly divided into three groups. Normal saline was given in group A and C57BL/6J mice. Intermedin was given by mini osmotic pumps at the dosage of 100 ng/kg/h and 500 ng/kg/h in group B and group C respectively. After the treatment of IMD for 6 weeks, aortic ultrasonography of group C showed that IMD prevented the progression of atherosclerotic lesions and the increase of wall thickness in the aorta. Oil-red-O staining of the entire aorta and the atherosclerotic aortic root section showed 2 folds decrease atherogenic plaque (p < 0.05). Serum lipid profiles were measured, compared with the group A, in group C TC and LDL-C levels were decreased by 86.32% and 89.68%, respectively (both p < 0.05), meanwhile, HDL-C level was significantly increased by 74.82% (p < 0.05). These data indicate that exogenous administration of IMD could prevent the progression of atherosclerotic plaque. The possible underlying mechanisms may relate to the improvement of lipid profiles.  相似文献   

4.
We examined whether resveratrol increases insulin-like growth factor-I (IGF-I) production in the hippocampus by stimulating sensory neurons in the gastrointestinal tract, thereby improving cognitive function in mice. Resveratrol increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice. Increases in tissue levels of CGRP, IGF-I, and IGF-I mRNA and immunohistochemical expression of IGF-I were observed in the hippocampus at 3 weeks after oral administration of resveratrol in WT mice. Significant enhancement of angiogenesis and neurogenesis was observed in the dentate gyrus of the hippocampus in these animals (P<.01). Improvement of spatial learning in the Morris water maze was observed in WT mice after administration of resveratrol. None of the effects of resveratrol observed in WT mice were seen after resveratrol administration in CGRP-knockout (CGRP−/−) mice. Although red wine containing 20 mg/L of resveratrol produced effects similar to those of resveratrol administrationl in WT mice, neither red wine containing 3.1 mg/L of resveratrol nor white wine exhibited such effects in WT mice. Resveratrol was undetectable in the hippocampus of WT mice administered resveratrol and red wine containing 20 mg/L of resveratrol. These observations strongly suggest that resveratrol increases hippocampal IGF-I production via sensory neuron stimulation in the gastrointestinal tract, thereby improving cognitive function in mice.  相似文献   

5.
Cyclin-dependent kinase inhibitors, p21Cip1 and p27Kip1, are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21Cip1 or p27Kip1 in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE−/− aortae, both apoE−/−/p21−/− and apoE−/−/p27−/− aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27Kip1 accelerated plaque formation significantly more than p21−/− in apoE−/− mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21Cip1 and p27Kip1 accelerates atherogenesis in apoE−/− mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.  相似文献   

6.
Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids.  相似文献   

7.
BackgroundRotavirus (RV) is the primary causative agent for viral gastroenteritis among infants and young children worldwide. Currently, no clinically approved and effective antiviral drug for the treatment of RV infection is available.PurposeWe investigated the potential anti-RV activity of resveratrol and underlying mechanisms by which resveratrol acted against RV.MethodsThe anti-RV activity of resveratrol in vitro was evaluated using plaque reduction assays. The effects of resveratrol on yield of virion progeny, viral polyprotein expression and genomic RNA synthesis were respectively investigated using enzyme-linked immunosorbent assays, western blotting and qRT-PCR assays. Further, we also measured the antiviral effect of resveratrol by evaluation of antigen clearance and assessment of changes in proinflammatory cytokines/chemokines in RV-infected neonatal mouse model.ResultsOur results indicated that 20 μM of resveratrol significantly inhibited RV replication in Caco-2 cell line by suppressing RV RNA synthesis, protein expression, viroplasm plaque formation, progeny virion production, and RV-induced cytopathy independent of the different strains and cell lines of RV that we used. Analysis of the effect of time post-addition of resveratrol indicated that its application inhibited early processes in the RV replication cycle. Further study of the underlying mechanism of anti-RV activity indicated that resveratrol inhibited RV replication by suppressing expression of heat-shock protein 90 (HSP90) mRNA and protein, and that the effect occurred in a dose-dependent manner. Overexpression of HSP90 was found to have attenuated the inhibitory effect of resveratrol on RV replication. Interestingly, the application of resveratrol were found to down-regulate the level of inhibition of RV-mediated MEK1/2 and ERK phosphorylation. Using a RV-infected suckling mice model, we found that application of resveratrol significantly lessened the severity of diarrhea, decreased viral titers, and relieved associated symptoms. Levels of mRNA expression of interleukin-2, interleukin-10, tumor necrosis factor-α, interferon-γ, macrophage inflammatory protein 1, and monocyte chemotactic protein-1 were all found to have been sharply reduced in intestinal tissue from mice which had been treated with resveratrol (10 or 20 mg/kg) after RV infection (p < 0.05).ConclusionThese findings implied that resveratrol exhibits antiviral activity and could be a promising treatment for rotavirus infection.  相似文献   

8.
This study was designed to determine whether lipocalin type-prostaglandin D synthase (l-pgds) deficiency contributes to atherogenesis using gene knockout (KO) mice. A high-fat diet was given to 8-week-old C57BL/6 (wild type; WT), l-pgds KO (LKO), apolipoprotein E (apo E) KO (AKO) and l-pgds/apo E double KO (DKO) mice. The l-pgds deficient mice showed significantly increased body weight, which was accompanied by increased size of subcutaneous and visceral fat tissues. Fat deposition in the aortic wall induced by the high-fat diet was significantly increased in LKO mice compared with WT mice, although there was no significant difference between AKO and DKO mice. In LKO mice, atherosclerotic plaque in the aortic root was also increased and, furthermore, macrophage cellularity and the expression of pro-inflammatory cytokines such as interleukin-1β and monocyte chemoattractant protein-1 were significant increased. In conclusion, l-pgds deficiency induces obesity and facilitates atherosclerosis, probably through the regulation of inflammatory responses.  相似文献   

9.

Objective

The parasympathetic nervous system regulates inflammation in peripheral tissues through a pathway termed the “cholinergic anti-inflammatory reflex” (CAIR). Mice deficient in the alpha 7 nicotinic acetylcholine receptor (α7−/−) have an impaired CAIR due to decreased signaling through this pathway. The purpose of this study was to determine if the increased inflammation in α7−/− mice is associated with enhanced serum and macrophage atherogenicity.

Methods

We measured serum markers of inflammation and oxidative stress, and macrophage atherogenicity in mouse peritoneal macrophages harvested from α7−/− mice on the background of C57BL/6 mice, as well as on the background of the atherosclerotic Apolipoprotein E-deficient (ApoE−/−) mice.

Results

α7-Deficiency had no significant effects on serum cholesterol, or on markers of serum oxidative stress (TBARS and paraoxonase1 activities). However, α7-deficiency significantly increased serum CRP and IL-6 (p < 0.05) levels in atherosclerotic mice, confirming an anti-inflammatory role for the α7 receptor. Macrophage cholesterol mass was increased by 25% in both normal and atherosclerotic mice in the absence of the α7 receptor (p < 0.05). This was accompanied by conditional increases in oxidized LDL uptake and in macrophage total peroxide levels. Furthermore, α7-deficiency reduced macrophage paraoxonase2 mRNA and activity by 50-100% in normal and atherosclerotic mice (p < 0.05 for each), indicating a reduction in macrophage anti-oxidant capacity in the α7−/− mice.

Conclusion

The above results suggest an anti-atherogenic role for the macrophage α7nAchr, through a mechanism that involves attenuated macrophage oxidative stress and decreased uptake of oxidized LDL.  相似文献   

10.
Enhanced susceptibility to atherosclerosis from severe hypertriglyceridemia (HTG) resulting from lipoprotein lipase (LPL) deficiency has been demonstrated in our recent findings which employed a unique mouse model. In the present study we provide further evidence that severe HTG due to LPL deficiency also promotes an atherothrombotic response to arterial injury induced by ferric chloride in a severe combined hyperlipidemic mouse model. Methods and results: A mouse model (LPL−/−XApoE−/− double knockout, DKO) with severe combined hyperlipidemia was established by crossing ApoE and LPL-deficient mice. The common carotid arteries of ApoE knockout (EKO) and DKO mice were subjected to injury by ferric chloride, and the formation of arterial thrombosis together with various markers were compared in these lesions. DKO mice demonstrated significantly enhanced thrombus formation overlying atherosclerotic plaque after injury, which contained smooth muscle cells, macrophages, and neutral lipid. The area of neointima, mean intima/media ratios, and the percentage of luminal stenosis were significantly greater (P < 0.01) in DKO mice. Compared with EKO mice, the expression of von Willebrand factor (vWF) and plasminogen activator inhibitor type 1 (PAI-1) were increased in DKO mice. Conclusions: Severe combined hyperlipidemia promotes thrombosis after ferric chloride injury to atherosclerotic vessels and HTG plays a major role in the process.  相似文献   

11.
There is a great need for the identification of biomarkers for the early diagnosis of atherosclerosis and the agents to prevent its progression. The aim of this study was to explore the effect of 24 week of nebivolol (a third-generation vasodilatory beta-blocker) treatment on serum protein profiles in Apo E?/? mice during atherosclerosis progression. Nebivolol treated and non-treated (the control group) groups consisted of 10 genetically modified homozygous Apo E?/? mice. Proteomic analyses were performed using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) in the serum samples from the nebivolol treated and non-treated Apo E?/? mice. The protein profiles obtained using three different chips, CM10 (weak cation-exchange), H50 (reverse phase), and IMAC30-Cu2+ (immobilized metal affinity capture) were statistically analyzed using the ProteinChip data manager 3.0 program. At the end of 24 week of nebivolol-treatment period, a total of 662 protein/peptide clustering peaks were detected using 12 different conditions and reading with high and low intensity laser energy. The highest total number of protein/peptide clusters was found on H50 chip array. The peak intensities of 95 of the 662 protein/peptide clusters were significantly different in the nebivolol-treated atherosclerotic group in comparison to the non-treated control mice groups (P < 0.05). Forty-three protein/peptides were up-regulated (high signal intensity) while 52 protein/peptides had lower signal intensity (down-regulated) in the nebivolol-treated atherosclerotic group. The proteomic profiles of nebivolol-treated Apo E?/? mice were different than the control group indicating a potential role of nebivolol in atherosclerosis. Our study contributes to understand the efficacy of nebivolol on serum protein/peptide profiles during atherosclerosis development.  相似文献   

12.
This study examined the effect of prostaglandin E2 (PGE2) produced by microsomal prostaglandin E synthase-1 (mPGES-1) on circadian rhythm. Using wild-type mice (WT) and mPGES-1 knockout mice (mPGES-1−/−), I recorded and automatically analyzed the natural behavior of mice in home cages for 24 h and measured brain levels of PGE2. The switch to wakefulness was not smooth, and sleepiness and the total duration of sleep were significantly longer in the mPGES-1−/− mice. Moreover, the basal concentration of PGE2 was significantly lower in the mPGES-1−/− mice. These findings suggest that PGE2 produced by mPGES-1 regulates the onset of wakefulness and the maintenance of circadian rhythm.  相似文献   

13.
14.
Angiopoietin-like protein family 4 (Angptl 4) has been shown to regulate lipoprotein metabolism through the inhibition of lipoprotein lipase (LPL). We generated ApoE−/−Angptl 4−/− mice to study the effect of Angptl 4 deficiency on lipid metabolism and atherosclerosis. Fasting and postolive oil-loaded triglyceride (TG) levels were largely decreased in ApoE−/−Angptl 4−/− mice compared with and ApoE−/−Angptl 4+/+ mice. There was a significant (75 ± 12%) reduction in atherosclerotic lesion size in ApoE−/−Angptl 4−/− mice compared with ApoE−/− Angptl 4+/+ mice. Peritoneal macrophages, isolated from Angptl 4−/− mice to investigate the foam cell formation, showed a significant decrease in newly synthesized cholesteryl ester (CE) accumulation induced by acetyl low-density lipoprotein (acLDL) compared with those from Angptl 4+/+ mice. Thus, genetic knockout of Angptl 4 protects ApoE−/− mice against development and progression of atherosclerosis and strongly suppresses the ability of the macrophages to become foam cells in vitro.  相似文献   

15.
Secretion of apolipoprotein (apo) B-containing lipoproteins by the liver depends mainly upon apo B availability and microsomal triglyceride transfer protein (MTP) activity and is subject to insulin regulation. Hepatic MTP mRNA expression is negatively regulated by insulin which correlates with inhibition of apo B secretion suggesting that insulin might suppress apo B secretion through an MTP-dependent mechanism. To investigate this possibility, we examined the acute effect of insulin on hepatic MTP expression and activity levels in vivo utilizing apobec-1−/− mice. Insulin did not significantly alter hepatic MTP mRNA levels or lipid transfer activity 2 h following injection, but suppressed expression of genes important in gluconeogenesis. To study the specific role of MTP, we expressed human MTP (hMTP) in primary rat hepatocytes using adenoviral gene transfer. Increased expression of hMTP resulted in a 47.6 ± 17.9% increase in total apo B secreted. Incubation of hepatocytes with insulin suppressed apo B secretion by 50.1 ± 10.8% in cells over-expressing hMTP and by 53.0 ± 12.4% in control transfected hepatocytes. Results indicate that even under conditions of increased hepatic apo B secretion mediated by MTP, responsiveness of hepatocytes to insulin to suppress apo B secretion is maintained.  相似文献   

16.

Objectives

To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development.

Methods and results

Chimeras with dysfunctional macrophage ABCA5 (ABCA5−M/−M) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5−/−) mice into irradiated LDLr−/− mice. In vitro, bone marrow-derived macrophages from ABCA5−M/−M chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr−/− mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5−M/−M chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5−M/−M chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding.

Conclusions

ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr−/− mice.  相似文献   

17.
Angiopoietin-like protein family 4 (Angptl4) has been shown to regulate lipoprotein metabolism through the inhibition of lipoprotein lipase (LPL). In familial hypercholesterolemia (FH), individuals lacking low-density lipoprotein receptor (LDLR) present not only hypercholesterolemia, but also increased plasma triglyceride (TG)-rich lipoprotein remnants, and develop atherosclerosis. In addition, the most common type of dyslipidemia in individuals with diabetes is increased TG levels.We first generated LDLR−/−Angptl4−/− mice to study the effect of Angptl4 deficiency on the lipid metabolism. Fasting total cholesterol, VLDL-C, LDL-C, HDL-C and TG levels were decreased in LDLR−/−Angptl4−/− mice compared with LDLR−/−Angptl4+/+ mice. In particular, post olive oil-loaded TG excursion were largely attenuated in LDLR−/−Angptl4−/− mice compared with LDLR−/−Angptl4+/+ mice. We next introduced diabetes by streptozotocin (STZ) treatment in Angptl4−/− mice and examined the impacts of Angptl4 deficiency. Compared with diabetic Angptl4+/+ mice, diabetic Angptl4−/− mice showed the improvement of fasting and postprandial hypertriglyceridemia as well. Thus, targeted silencing of Angptl4 offers a potential therapeutic strategy for the treatment of dyslipidemia in individuals with FH and insulin deficient diabetes.  相似文献   

18.
Ischemia/reperfusion (IR) induced injury results in significant tissue damage in wild-type, but not antibody-deficient, Rag-1−/− mice. However, Rag-1−/− mice sustain intestinal damage after administration of wild-type antibodies or naturally occurring, specific anti-phospholipid related monoclonal antibodies, suggesting involvement of a lipid antigen. We hypothesized that IR initiates metabolism of cellular lipids, resulting in production of an antigen recognized by anti-phospholipid antibodies. At multiple time points after Sham or IR treatment, lipids extracted from mouse jejunal sections were analyzed by electrospray ionization triple quadrupole mass spectrometry. Within 15 min of reperfusion, IR induced significantly more lysophosphatidylcholine (lysoPC), lysophosphatidylglycerol (lysoPG) and free arachidonic acid (AA) production than Sham treatment. While lysoPC, lysoPG, and free AA levels were similar in C57Bl/6 (wild-type) and Rag-1−/− mice, IR led to Cox-2 activation and prostaglandin E2 (PGE2) production in wild-type, but not in the antibody-deficient, Rag-1−/− mice. Administration of wild-type antibodies to Rag-1−/− mice restored PGE2 production and intestinal damage. These data indicate that IR-induced intestinal damage requires antibodies for Cox-2 stimulated PGE2 production but not for production of lysoPC and free AA.  相似文献   

19.
Little is known about how hypercholesterolaemia affects Ca2+ signalling in the vasculature of ApoE−/− mice, a model of atherosclerosis. Our objectives were therefore to determine (i) if hypercholesterolaemia alters Ca2+ signalling in aortic endothelial cells before overt atherosclerotic lesions occur, (ii) how Ca2+ signals are affected in older plaque-containing mice, and (iii) whether Ca2+ signalling changes were translated into contractility differences. Using confocal microscopy we found agonist-specific Ca2+ changes in endothelial cells. ATP responses were unchanged in ApoE−/− cells and methyl-β-cyclodextrin, which lowers cholesterol, was without effect. In contrast, Ca2+ signals to carbachol were significantly increased in ApoE−/− cells, an effect methyl-β-cyclodextrin reversed. Ca2+ signals were more oscillatory and store-operated Ca2+ entry decreased as mice aged and plaques formed. Despite clearly increased Ca2+ signals, aortic rings pre-contracted with phenylephrine had impaired relaxation to carbachol. This functional deficit increased with age, was not related to ROS generation, and could be partially rescued by methyl-β-cyclodextrin. In conclusion, carbachol-induced calcium signalling and handling are significantly altered in endothelial cells of ApoE−/− mice before plaque development. We speculate that reduction in store-operated Ca2+ entry may result in less efficient activation of eNOS and thus explain the reduced relaxatory response to CCh, despite the enhanced Ca2+ response.  相似文献   

20.
The present study investigated the effects of resveratrol (RV), a polyphenol with potent antioxidant properties, on oxidative stress parameters in liver and kidney, as well as on serum biochemical parameters of streptozotocin (STZ)-induced diabetic rats. Animals were divided into six groups (n = 8): control/saline; control/RV 10 mg/kg; control/RV 20 mg/kg; diabetic/saline; diabetic/RV10 mg/kg; diabetic/RV 20 mg/kg. After 30 days of treatment with resveratrol the animals were sacrificed and the liver, kidney and serum were used for experimental determinations. Results showed that TBARS levels were significantly increased in the diabetic/saline group and the administration of resveratrol prevented this increase in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). The activities of catalase (CAT), superoxide dismutase (SOD) and aminolevulinic acid dehydratase (δ-ALA-D) and the levels of non protein thiols (NPSH) and vitamin C presented a significant decrease in the diabetic/saline group when compared with the control/saline group (P < 0.05). The treatment with resveratrol was able to prevent these decrease improving the antioxidant defense of the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). In addition, the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ-glutamiltransferase (γ-GT) activities as well as in levels of urea, creatinine, cholesterol and triglycerides observed in the diabetic/saline group were reverted to levels close to normal by the administration of resveratrol in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). These findings suggest that resveratrol could have a protector effect against hepatic and renal damage induced by oxidative stress in the diabetic state, which was evidenced by the capacity of this polyphenol to modulate the antioxidant defense and to decrease the lipid peroxidation in these tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号