首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have applied atomic force microscopy (AFM) to the measurement of BAL 31 nuclease activities. BAL 31 nuclease, a species of exonuclease, is used to remove unwanted sequences from the termini of DNA before cloning. For cutting out only the appropriate sequences, it is important to know the nuclease properties, such as digestion speed and the distribution of the lengths of the digested DNA. AFM was used to obtain accurate measurements on the lengths of DNA fragments before and after BAL 31 nuclease digestion. We analyzed 4 DNAs with known number of base pairs (288, 778, 1818, and 3162 base pairs) for correlating the contour length measured by AFM with the number of base pairs under the deposition conditions used. We used this calibration for analyzing DNA degradation by BAL 31 nuclease from the AFM measurement of contour lengths of digested DNAs. In addition, the distribution of digested DNA could be analyzed in more detail by AFM than by electrophoresis, because digested DNA were measured as a population by electrophoresis, but were measured individually by AFM. These results show that AFM will be a useful new technique for measuring nuclease activities. Received: 8 August 1997 / Accepted: 10 September 1997  相似文献   

2.
The flexibility of the chromatin structure, necessary for the processing of the genomic DNA, is controlled by a number of factors where flexibility and mobility of the nucleosomes is essential. Here, the influence of DNA supercoiling on the structure of single nucleosomes is investigated. Circular supercoiled plasmid DNA sub-saturated with histones was visualized by scanning force microscopy (SFM) in aqueous solution. SFM-imaging compared with topological analysis indicates instability of nucleosomes when the salt concentration is raised from 10 mM to 100 mM NaCl. Nucleosomes were observed after the deposition to the used scanning surface, i.e. mica coated with polylysine. On the images, the nucleosomes appear with a high probability in end-loops near the apices of the superhelices. In 100 mM NaCl but not in 10 mM NaCl, a significant number of complexes present the nucleosomes on superhelical crossings mainly located adjacent to an end-loop. The morphology of these structures and statistical analysis suggest that DNA loops were formed on the histone octamers, where the loop size distribution shows a pronounced peak at 50 nm. Recently, the formation and diffusion of loops on octamers has been discussed as a mechanism of translocations of nucleosomes along DNA. The presented data likely confirm the occurrence of loops, which may be stabilized by supercoiling. Analysis of the structure of regular nucleosomes not located on crossings indicates that reducing the salt concentration leads to more conformations, where DNA is partially unwrapped from the distal ends of the octamer.  相似文献   

3.
In this work human chromosomes have been treated with RNase and pepsin to remove the layer of cellular material that covers the standard preparations on glass slides. This allows characterization of the topography of chromosomes at nanometer scale in air and in physiological solution by atomic force microscopy. Imaging of the dehydrated structure in air indicates radial arrangement of chromatin loops as the last level of DNA packing. However, imaging in liquid reveals a last level of organization consisting of a hierarchy of bands and coils. Additionally force curves between the tip and the chromosome in liquid are consistent with radial chromatin loops. These results and previous electron microscopy studies are analyzed, and a model is proposed for the chromosome structure in which radial loops and helical coils coexist.  相似文献   

4.
Curvature and flexibility are structural properties of central importance to genome function. However, due to the difficulties in finding suitable experimental conditions, methods for studying one without the interference of the other have proven to be difficult. We propose a new approach that provides a measure of inherent flexibility of DNA by taking advantage of two powerful techniques, X-ray crystallography and nuclear magnetic resonance. Both techniques are able to detect local curvature on DNA fragments but, while the first analyzes DNA in the solid state, the second works on DNA in solution. Comparison of the two data sets allowed us to calculate the relative contribution to flexibility of the three rotations and three translations, which relate successive base pair planes for the ten different dinucleotide steps. These values were then used to compute the variation of flexibility along a given nucleotide sequence. This allowed us to validate the method experimentally through comparisons with maps of local fluctuations in DNA molecule trajectory constructed from atomic force microscopy imaging in solution. We conclude that the six dinucleotide-step parameters defined here provide a powerful tool for the exploration of DNA structure and, consequently will make an important contribution to our understanding of DNA-sequence-dependent biological processes.  相似文献   

5.
Vesicles have been utilized as nanoscale vehicles for reagents including potential drug delivery systems. When used to deliver drugs, vesicle size and the size distribution are important factors in the determination of the dosage, cell specificity, and rate of clearance from the body. Current size measurement techniques for vesicles are electron microscopy and dynamic light scattering, but their results are not equal. Therefore atomic force microscopy was attempted as another size measurement technique. After adsorption of the vesicles from a low-concentration solution of vesicles on mica substrate, each vesicle is generally found as a flattened structure. The diameters of vesicles in these solutions and their distribution have been successfully estimated from the surface area of the flattened structure of each vesicle. At higher concentrations, we have found a monolayer crammed with dome-shaped vesicles on the substrate. The diameters of vesicles in these solutions have also been successfully estimated from the surface area of the dome-shaped structure of each vesicle. Diameters of vesicles in solution estimated from two different vesicle concentrations are not close to those reported by electron microscope studies but are close to those reported by dynamic light scattering studies.  相似文献   

6.
7.
原子力显微镜单分子力谱研究生物分子间相互作用   总被引:2,自引:0,他引:2  
原子力显微镜单分子力谱是近年来发展起来的能在单分子水平研究生物分子相互作用的新工具。本文综述了单分子力谱的测定原理、方法及其在研究蛋白.蛋白、蛋白-DNA相互作用,蛋白质去折叠和活细胞上配体/受体结合中的应用进展。  相似文献   

8.
The interaction between ribosome-inactivating proteins (RIPs) and supercoiled DNA was observed with an atomic force microscope (AFM). It was found that RIPs can bind to both supercoiled DNA and the unwound double stranded loop region in supercoiled DNA. The RIPs hound to the supercoils can induce the conformational change of supercoiled DNA. Furthermore, the supercoiled DNA was relaxed and cleaved into nick or linear form by RIPs. It indicated that RIP seemed to be a supercoil-dependent DNA binding protein and exhibited the activity of su-percoil-dependent DNA endonuclease.  相似文献   

9.
10.
The molecular details of adhesion mechanics in phospholipid bilayers have been studied using atomic force microscopy (AFM). Under tension fused bilayers of dipalmitoylphosphatidylcholine (DPPC) yield to give non-distance dependent and discrete force plateaux of 45.4, 81.6 and 113±3.5 pN. This behaviour may persist over distances as great as 400 nm and suggests the stable formation of a cylindrical tube which bridges the bilayers on the two surfaces. The stability of this connective structure may have implications for the formation of pili and hence for the initial stage of bacterial conjugation. Dimyristoylphosphatidylcholine (DMPC) bilayers also exhibit force plateaux but with a much less pronounced quantization. Bilayers composed of egg PC, sterylamine and cholesterol stressed in a similar way show complex behaviour which can in part be explained using the models demonstrated in the pure lipids.  相似文献   

11.
In this study, we used, for the first time, atomic force microscope (AFM) images to investigate the mode of action of DNA topoisomerase I (topo I) in the presence and absence of its inhibitors: camptothecin (CPT) and tyrphostin AG-1387. The results revealed that in the absence of the inhibitors, the enzyme relaxed supercoiled DNA starting from a certain point in the DNA molecules and proceeded in one direction towards one of the edges of the DNA molecule. In addition, the relaxation of the supercoiled DNA is subsequently followed by a knotting event. In the presence of CPT, enzyme-supercoiled DNA complexes in which the enzyme is locked inside a relaxed region of the supercoiled DNA molecule were observed. Tyrphostin AG-1387 altered the DNA relaxation process of topo I producing unique shapes of DNA molecules. AFM images of the topo I protein provided a picture of the enzyme, which resembles its known crystallographic structure. Thus, AFM images provide new information on the mode of action of topo I in the absence and presence of its inhibitors.  相似文献   

12.
Sharma A  Anderson KI  Müller DJ 《FEBS letters》2005,579(9):2001-2008
We have characterized the cell surface of zebrafish stratified epithelium using a combined approach of light and atomic force microscopy under conditions which simulate wound healing. Microridges rise on average 100 nm above the surface of living epithelial cells, which correlate to bundles of cytochalasin B-insensitive actin filaments. Time-lapse microscopy revealed the bundles to form a highly dynamic network on the cell surface, in which bundles and junctions were severed and annealed on a time scale of minutes. Atomic force microscopy topographs further indicated that actin bundle junctions identified were of two types: overlaps and integrated end to side T- and Y-junctions. The surface bundle network is found only on the topmost cell layer of the explant, and never on individual locomoting cells. Possible functions of these actin bundles include cell compartmentalization of the cell surface, resistance to mechanical stress, and F-actin storage.  相似文献   

13.
Atomic force microscopy (AFM) indentation has become an important technique for quantifying the mechanical properties of live cells at nanoscale. However, determination of cell elasticity modulus from the force–displacement curves measured in the AFM indentations is not a trivial task. The present work shows that these force–displacement curves are affected by indenter-cell adhesion force, while the use of an appropriate indentation model may provide information on the cell elasticity and the work of adhesion of the cell membrane to the surface of the AFM probes. A recently proposed indentation model (Sirghi, Rossi in Appl Phys Lett 89:243118, 2006), which accounts for the effect of the adhesion force in nanoscale indentation, is applied to the AFM indentation experiments performed on live cells with pyramidal indenters. The model considers that the indentation force equilibrates the elastic force of the cell cytoskeleton and the adhesion force of the cell membrane. It is assumed that the indenter-cell contact area and the adhesion force decrease continuously during the unloading part of the indentation (peeling model). Force–displacement curves measured in indentation experiments performed with silicon nitride AFM probes with pyramidal tips on live cells (mouse fibroblast Balb/c3T3 clone A31-1-1) in physiological medium at 37°C agree well with the theoretical prediction and are used to determine the cell elasticity modulus and indenter-cell work of adhesion. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Recent studies indicate that the biophysical properties of the cellular microenvironment strongly influence a variety of fundamental cell behaviors. The extracellular matrix’s (ECM) response to mechanical force, described mathematically as the elastic modulus, is believed to play a particularly critical role in regulatory and pathological cell behaviors. The basement membrane (BM) is a specialization of the ECM that serves as the immediate interface for many cell types (e.g. all epithelial cells) and through which cells are connected to the underlying stroma. Matrigel is a commercially available BM-like complex and serves as an easily accessible experimental simulant of native BMs. However, the local elastic modulus of Matrigel has not been defined under physiological conditions. Here we present the procedures and results of indentation tests performed on Matrigel with atomic force microscopy (AFM) in an aqueous, temperature controlled environment. The average modulus value was found to be approximately 450 Pa. However, this result is considerably higher than macroscopic shear storage moduli reported in the scientific literature. The reason for this discrepancy is believed to result from differences in test methods and the tendency of Matrigel to soften at temperatures below 37° C.  相似文献   

15.
Hepatitis B virus envelope is mainly composed of three forms of the same protein expressed from different start codons of the same open reading frame. The smaller form named S protein corresponds to the C-terminal common region and represents about 80% of the envelope proteins. It is mainly referred as hepatitis B virus surface antigen (HBsAg). Over expressed in the host cell, this protein can be produced as spherical and tubular self-organized particles. Highly immunogenic, these particles are used in licensed hepatitis B vaccines. In this study we have combined transmission electron microscopy and atomic force microscopy to determine the shape and size of HBsAg particles produced from the yeast Hansenula polymorpha. Tapping mode atomic force microscopy in liquid allows structural details of the surface to be delineated with a resolution in the nanometer range. Particles were decorated by closely packed spike-like structures protruding from particle surface. Protrusions appeared uniformly distributed at the surface and an average number of 75 protrusions per particle were calculated. Importantly, we demonstrated that proteins mainly contribute to the topography of the protrusions.  相似文献   

16.
Double minute chromosomes (DMs) are acentric, autonomously replicating extra-chromosomes and frequently mediate gene amplification in tumor and drug resistant cells. Atomic force microscopy (AFM) is a powerful tool in microbiology. We used AFM to explore the ultrastructure of DMs in mouse fibroblasts 3T3R500. DMs in various phases of cell cycle were also studied in order to elucidate the mechanisms of their duplication and separation. Metaphase spread and induced premature condensed chromosomes (PCCs) were observed under the AFM. DMs were detected to be composed of two compact spheres linked by fibers. The fibers of DMs directly connected with metaphase chromosomes were observed. Many single-minutes and few DMs were detected in G1 PCCs, while more DMs were detected in S PCCs than in G1 PCCs. Besides, all of the DMs in G2 PCCs were coupled. Our present results suggested that DMs might divide into single-minutes during or before G1-phase, followed by duplication of the single-minutes in S-phase. Moreover, we introduced a new powerful tool to study DMs and got some ideal results.  相似文献   

17.
The complex structures of water-soluble wheat arabinoxylans have been mapped along individual molecules, and within populations, using the visualisation of the binding of inactivated enzymes by atomic force microscopy (AFM). It was demonstrated that site-directed mutagenesis (SDM) can be used to produce inactive enzymes as structural probes. For the SDM mutants AFM has been used to compare the binding of different xylanases to arabinoxylans. Xylanase mutant E386A, derived from the Xyn11A enzyme (Neocallimastrix patriciarium), was shown to bind randomly along arabinoxylan molecules. The xylanase binding was also monitored following Aspergillus niger arabinofuranosidase pre-treatment of samples. It was demonstrated that removal of arabinose side chains significantly altered the binding pattern of the inactivated enzyme. Xylanase mutant E246A, derived from the Xyn10A enzyme (Cellvibrio japonicus), was found to show deviations from random binding to the arabinoxylan chains. It is believed that this is due to the effect of a small residual catalytic activity of the enzyme that alters the binding pattern of the probe. Control procedures were developed and assessed to establish that the interactions between the modified xylanases and the arabinoxylans were specific interactions. The experimental data demonstrates the potential for using inactivated enzymes and AFM to probe the structural heterogeneity of individual polysaccharide molecules.  相似文献   

18.
Atomic force microscopy has been used to characterise populations of extracted water-soluble wheat endosperm arabinoxylans. The adsorbed molecules are extended structures with an estimated Kuhn statistical segment length of 128 nm, suggesting that they adopt an ordered helical structure. However, estimates of the molecular weight distribution, coupled with size exclusion data, suggest that, in solution, the polysaccharides behave as semi-flexible coils, with a Kuhn length of 16 nm. These data imply that adsorption of the arabinoxylan structures onto mica promotes formation of the helical structure. Adoption of this ordered structure is fortunate because it has permitted characterisation of branching observed in a small proportion (approximately 15%) of the population of otherwise linear molecules. The degree of branching has been found to increase with the contour length of the molecules. Degradation of the polysaccharides with xylanase has been used to confirm that both the backbone and branches are based on beta-(1-->4) linked D-xylopyranosyl residues.  相似文献   

19.
In Escherichia coli, errors in newly-replicated DNA, such as the incorporation of a nucleotide with a mis-paired base or an accidental insertion or deletion of nucleotides, are corrected by a methyl-directed mismatch repair (MMR) pathway. While the enzymology of MMR has long been established, many fundamental aspects of its mechanisms remain elusive, such as the structures, compositions, and orientations of complexes of MutS, MutL, and MutH as they initiate repair. Using atomic force microscopy, we—for the first time—record the structures and locations of individual complexes of MutS, MutL and MutH bound to DNA molecules during the initial stages of mismatch repair. This technique reveals a number of striking and unexpected structures, such as the growth and disassembly of large multimeric complexes at mismatched sites, complexes of MutS and MutL anchoring latent MutH onto hemi-methylated d(GATC) sites or bound themselves at nicks in the DNA, and complexes directly bridging mismatched and hemi-methylated d(GATC) sites by looping the DNA. The observations from these single-molecule studies provide new opportunities to resolve some of the long-standing controversies in the field and underscore the dynamic heterogeneity and versatility of MutSLH complexes in the repair process.  相似文献   

20.
In neural cells, nerve growth factor (NGF) initiates its survival signal through the binding to its cell surface receptor tyrosine kinase A (TrkA). Understanding the pattern of TrkA distribution and association in living cells can provide a fingerprint for the diagnostic comparison with alterations underlying ligand-receptor dysfunction seen in various neurological diseases. In this study, we use the NGF-TrkA-specific interaction as a probe to identify TrkA on living PC12 cell by atomic force microscopy (AFM). An NGF-modified AFM tip was used to perform force volume (FV) imaging, generating a 2D force map to illustrate the distribution and association of TrkA on PC12 cell membrane. It is found that TrkA is highly aggregated at local regions of the cell. This unique protein association may be required to promote its function as a receptor of NGF. The methodology that we developed in this study can be adapted by other systems, thus providing a general tool for investigating protein association in its natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号