首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Barré B  Perkins ND 《The EMBO journal》2007,26(23):4841-4855
Aberrantly active NF-kappaB complexes can contribute to tumorigenesis by regulating genes that promote the growth and survival of cancer cells. We have investigated NF-kappaB during the cell cycle and find that its ability to regulate the G1-phase expression of key proto-oncogenes is subject to regulation by the integrated activity of IkappaB kinase (IKK)alpha, IKKbeta, Akt and Chk1. The coordinated binding of NF-kappaB subunits to the Cyclin D1, c-Myc and Skp2 promoters is dynamic with distinct changes in promoter occupancy and RelA(p65) phosphorylation occurring through G1, S and G2 phases, concomitant with a switch from coactivator to corepressor recruitment. Akt activity is required for IKK-dependent phosphorylation of NF-kappaB subunits in G1 and G2 phases, where Chk1 is inactive. However, in S-phase, Akt is inactivated, while Chk1 phosphorylates RelA and associates with IKKalpha, inhibiting the processing of the p100 (NF-kappaB2) subunit, which also plays a critical role in the regulation of these genes. These data reveal a complex regulatory network integrating NF-kappaB with the DNA-replication checkpoint and the expression of critical regulators of cell proliferation.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Ribonucleotide reductase (RNR) enzyme is composed of the homodimeric RRM1 and RRM2 subunits, which together form a heterotetramic active enzyme that catalyzes the de novo reduction of ribonucleotides to generate deoxyribonucleotides (dNTPs), which are required for DNA replication and DNA repair processes. In this study, we show that ablation of RRM1 and RRM2 by siRNA induces G1/S phase arrest, phosphorylation of Chk1 on Ser345 and phosphorylation of γ-H2AX on S139. Combinatorial ablation of RRM1 or RRM2 and Chk1 causes a dramatic accumulation of γ-H2AX, a marker of double-strand DNA breaks, suggesting that activation of Chk1 in this context is essential for suppression of DNA damage. Significantly, we demonstrate for the first time that Chk1 and RNR subunits co-immunoprecipitate from native cell extracts. These functional genomic studies suggest that RNR is a critical mediator of replication checkpoint activation.  相似文献   

13.
14.
15.
16.
Checkpoint kinases Chk1 and Chk2 are two key components in the DNA damage-activated checkpoint signaling pathways. To distinguish the roles of Chk1 and Chk2 in S and G2 checkpoints after DNA damage, derivatives of the human breast cancer cell line MDA-MB-231 were established that express short hairpin RNAs to selectively suppress Chk1 or Chk2 expression. DNA damage was induced with the topoisomerase I inhibitor SN38 which arrests cells in S or G2 phase depending on concentration. Depletion of Chk1 resulted in loss of S phase arrest upon incubation with SN38, but the cells still arrested in G2. Suppression of Chk2 had no impact on cell cycle arrest, while cells concurrently suppressed for both Chk1 and Chk2 still arrested primarily in G2 suggesting the presence of an alternate checkpoint regulator. One critical target for Chk1 is Cdc25A which is phosphorylated and degraded to prevent cell cycle progression. Cells arrested in G2 in the absence of Chk1/Chk2 still showed regulation of Cdc25A consistent with the action of an alternate kinase. One candidate for an alternate checkpoint kinase is MAPKAPK2 (MK2), yet this kinase was minimally activated by DNA damage and its inhibition did not facilitate either S or G2 progression. Furthermore, we were unable to substantiate the recent observation that the Chk1 inhibitor UCN-01 inhibits MK2. These results show that Chk1, but neither Chk2 nor MK2, is an important regulator of S phase arrest, and suggest that an additional kinase can contribute to the G2 arrest.  相似文献   

17.
Chk1 is a key regulator of the S and G2/M checkpoints and is activated following DNA damage by agents such as the topoisomerase I inhibitor camptothecin (CPT). It has been proposed that Chk1 inhibitors used in combination with such a DNA damaging agent to treat tumors would potentiate cytotoxicity and increase the therapeutic index, particularly in tumors lacking functional p53. The aim of this study was to determine whether gene expression analysis could be used to inform lead optimization of a novel series of Chk1 inhibitors. The candidate small-molecule Chk1 inhibitors were used in combination with CPT to identify potential markers of functional Chk1 inhibition, as well as resulting cell cycle progression, using cDNA-based microarrays. Differential expression of several of these putative marker genes was further validated by RT-PCR for use as a medium-throughput assay. In the presence of DNA damage, Chk1 inhibitors altered CPT-dependent effects on the expression of cell cycle and DNA repair genes in a manner consistent with a Chk1-specific mechanism of action. Furthermore, differential expression of selected marker genes, cyclin E2, EGR1, and DDIT3, was dose dependent for Chk1 inhibition. RT-PCR results for these genes following treatment with a panel of Chk1 inhibitors showed a strong correlation between marker gene response and the ability of each compound to abrogate cell cycle arrest in situ following CPT-induced DNA damage. These results demonstrate the utility of global expression analysis to identify surrogate markers, providing an alternative method for rapid compound characterization to support advancement decisions in early drug discovery.  相似文献   

18.
19.
20.
A role for PI 3-kinase and PKB activity in the G2/M phase of the cell cycle   总被引:7,自引:0,他引:7  
The role of the PI 3-kinase cascade in regulation of cell growth is well established [1]. PKB (protein kinase B) is a key downstream effector of the PI 3-kinase pathway and is best known for its antiapoptotic effects [2,3] and the role it plays in initiation of S phase [4]. Here, we show that PKB activity is high in the G2/M phase of the cell cycle in epithelial cells. Inhibition of the PI 3-kinase pathway in MDCK cells induces apoptosis at the G2/M transition, prevents activation of cyclin B-associated kinase, and prohibits entry of the surviving cells into mitosis. All of these consequences of the inhibition of PI 3-kinase are relieved by expression of a constitutively active form of PKB (caPKB), indicating that PKB plays a role in regulation of the G2/M phase. Inhibition of PI 3-kinase results in activation of Chk1, whereas caPKB inhibits the ability of Chk1 to become activated in response to treatment with hydroxyurea. Preliminary data show that PKB phosphorylates the Chk1 polypeptide in vitro on serine 280. These results not only implicate PKB activity in transition through the G2/M stage of the cell cycle, but they also suggest the existence of crosstalk between the PI 3-kinase pathway and the key regulators of the DNA damage checkpoint machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号