首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ~80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.  相似文献   

2.
已知丙型肝炎病毒(hepatitis C virus,HCV)可通过其蛋白酶NS3/4A切割线粒体抗病毒信号蛋白(mitochondrial antiviral signaling protein,MAVS)来逃逸天然免疫识别,但尚不清楚其切割动力学及切割在抑制干扰素中的作用。本研究旨在细胞模型中探讨HCV感染过程中病毒复制建立及病毒NS3/4A切割MAVS的动态过程,探究NS3/4A切割MAVS对病毒逃逸宿主天然免疫建立感染的贡献。首先构建基于绿色荧光蛋白(green fluorescent protein,GFP)的MAVS切割报告系统(GFP-NLS-MAVS-TM462),用 HCV Jc1-Gluc 感染Huh7.5/GFP-NLS-MAVS-TM462细胞。结果显示,病毒复制早期MAVS切割效率较低;NS3/4A高效切割MAVS发生于HCV复制晚期,且其切割效率与NS3蛋白水平相关。利用带有GFP ypet的HCV报告病毒Jc1-378-1感染Huh7.5/RFP-NLS-MAVS-TM462细胞,在单细胞水平观察HCV感染阳性细胞中MAVS被切割情况,发现HCV复制细胞中仅部分细胞MAVS被切割。进一步研究发现,不同基因型NS3/4A切割MAVS的效率仅与NS3表达水平相关。以上结果提示,HCV蛋白酶NS3/4A切割MAVS依赖NS3/4A蛋白在病毒复制过程中的累积,对在病毒复制早期逃逸宿主天然免疫建立感染可能无显著贡献。  相似文献   

3.
The regulation of apoptosis during infection is an important factor for host survival and, in some cases, also for the virus life cycle. At the same time, mechanisms to prevent the induction of apoptosis have been observed in numerous viral pathogens, but until now the role of apoptosis during arenavirus infection has not been investigated. Junin virus (JUNV) belongs to the New World arenavirus serogroup of the Arenaviridae and is the causative agent of Argentine hemorrhagic fever. We have demonstrated that infection with JUNV in cell culture does not induce apoptosis but leads to cleavage of the nucleoprotein (NP) into discrete products resembling caspase cleavage events. Similar specific NP degradation patterns were also observed in NP-transfected cell lines, and a closer examination of the sequence of NP showed several putative caspase cleavage motifs. Point mutations that abolished these cleavage motifs were consistent with the loss of certain cleavage products. Consistent with these data, further studies showed that treatment with a caspase inhibitor also reduced NP cleavage, indicating that the observed cleavage events were occurring as a result of caspase activity with NP as a substrate. Finally, we showed that expression of NP suppresses the cleavage of caspase 3 in cells treated with an apoptosis activator. Based on these findings, we propose that NP functions as a decoy substrate for caspase cleavage in order to inhibit the induction of apoptosis in JUNV-infected cells.  相似文献   

4.
Although induction of apoptosis by bovine ephemeral fever virus (BEFV) in several cell lines has been previously demonstrated by our laboratory, less information is available on the process of BEFV-induced apoptosis in terms of cellular pathways and specific proteins involved. In order to determine the step in viral life cycle at which apoptosis of infected cells is triggered, chemical and physical agents were used to block viral infection. Treatment of BHK-21 infected cells with ammonium chloride (NH4Cl) or cells infected with UV-inactivated BEFV was seen to abrogate virus apoptosis induction, suggesting that virus uncoating and gene expression are required for the induction of apoptosis. Using soluble death receptors Fc:Fas chimera to block Fas signaling, BEFV-induced apoptosis was inhibited in cells. BEFV infection of BHK-21 cells results in the Fas-dependent activation of caspase 8 and cleavage of Bid. This initiated the dissipation of the membrane potential and the release of cytochrome c but not AIF or Smac/DIABLO from mitochondrial into cytoplasm leading to activation of caspase 9. Combined activation of the death receptor and mitochondrial pathways results in activation of the downstream effecter caspase 3 leading to cleavage of PARP. Fas-mediated BEFV-induced apoptosis could be suppressed by the overexpression of Bcl-2 or by treatment with caspase inhibitors and soluble death receptors Fc:Fas chimera. Taken together, this study provided first evidence demonstrating that BEFV-induced apoptosis requires viral gene expression and occurs through the activation of Fas and mitochondrion-mediated caspase-dependent pathways. An erratum to this article can be found at  相似文献   

5.

Background

Host responses to viral infection include both immune activation and programmed cell death. The mitochondrial antiviral signaling adaptor, MAVS (IPS-1, VISA or Cardif) is critical for host defenses to viral infection by inducing type-1 interferons (IFN-I), however its role in virus-induced apoptotic responses has not been elucidated.

Principal Findings

We show that MAVS causes apoptosis independent of its function in initiating IFN-I production. MAVS-induced cell death requires mitochondrial localization, is caspase dependent, and displays hallmarks of apoptosis. Furthermore, MAVS−/− fibroblasts are resistant to Sendai virus-induced apoptosis. A functional screen identifies the hepatitis C virus NS3/4A and the Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) nonstructural protein (NSP15) as inhibitors of MAVS-induced apoptosis, possibly as a method of immune evasion.

Significance

This study describes a novel role for MAVS in controlling viral infections through the induction of apoptosis, and identifies viral proteins which inhibit this host response.  相似文献   

6.
Infectious bursal disease virus (IBDV) induces immunodeficiency in young chickens and apoptosis in chicken embryos. To understand the relation between the viral pathogenesis and the induction of cell death, chicken embryonic fibroblast (CEF) cells were infected with IBDV intermediate (im) and very virulent (vv) strains at different MOIs. The cell viability and DNA fragmentation were evaluated in infected cells. The cellular apoptotic pathway involve was investigated by determining the activities of caspase cascade. The imIBDV strain was replicated well in CEF cells and shown higher viral titers than vvIBDV. Apoptosis changes were observed only in vvIBDV-infected CEF cells at higher MOI 48 h post infection. Efflux of cytochrome c suggests that the intrinsic pathway of the apoptotic process induced by vvIBDV infection independently of virus replication. Prediction of caspase substrates cleavage sites revealed that different IBDV strains have conserved cleavage motif pattern for VP2 and VP5 viral proteins. These findings suggest the pathogenicity of IBDV strains might be involved in the induction of apoptosis in host cells.  相似文献   

7.
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causative agent of three hyperproliferative disorders: Kaposi’s sarcoma, primary effusion lymphoma (PEL) and multicentric Castleman’s disease. During viral latency a small subset of viral genes are produced, including KSHV latency-associated nuclear antigen (LANA), which help the virus thwart cellular defense responses. We found that exposure of KSHV-infected cells to oxidative stress, or other inducers of apoptosis and caspase activation, led to processing of LANA and that this processing could be inhibited with the pan-caspase inhibitor Z-VAD-FMK. Using sequence, peptide, and mutational analysis, two caspase cleavage sites within LANA were identified: a site for caspase-3 type caspases at the N-terminus and a site for caspase-1 and-3 type caspases at the C-terminus. Using LANA expression plasmids, we demonstrated that mutation of these cleavage sites prevents caspase-1 and caspase-3 processing of LANA. This indicates that these are the principal sites that are susceptible to caspase cleavage. Using peptides spanning the identified LANA cleavage sites, we show that caspase activity can be inhibited in vitro and that a cell-permeable peptide spanning the C-terminal cleavage site could inhibit cleavage of poly (ADP-ribose) polymerase and increase viability in cells undergoing etoposide-induced apoptosis. The C-terminal peptide of LANA also inhibited interleukin-1beta (IL-1β) production from lipopolysaccharide-treated THP-1 cells by more than 50%. Furthermore, mutation of the two cleavage sites in LANA led to a significant increase in IL-1β production in transfected THP-1 cells; this provides evidence that these sites function to blunt the inflammasome, which is known to be activated in latently infected PEL cells. These results suggest that specific caspase cleavage sites in KSHV LANA function to blunt apoptosis as well as interfere with the caspase-1-mediated inflammasome, thus thwarting key cellular defense mechanisms.  相似文献   

8.
MAVS signalosome plays an important role in RIG‐I‐like receptor (RLR)‐induced antiviral signaling. Upon the recognition of viral RNAs, RLRs activate MAVS, which further recruits TRAF6 and other signaling proteins to initiate type I interferon (IFN) activation. MAVS signalosome also regulates virus‐induced apoptosis to limit viral replication. However, the mechanisms that control the activity of MAVS signalosome are still poorly defined. Here, we report NLRP11, a Nod‐like receptor, is induced by type I IFN and translocates to mitochondria to interact with MAVS upon viral infection. Using MAVS as a platform, NLRP11 degrades TRAF6 to attenuate the production of type I IFNs as well as virus‐induced apoptosis. Our findings reveal the regulatory role of NLRP11 in antiviral immunity by disrupting MAVS signalosome.  相似文献   

9.
The mitochondrial antiviral signaling protein MAVS (IPS-1, VISA, or Cardif) plays an important role in the host defense against viral infection by inducing type I interferon. Recent reports have shown that MAVS is also critical for virus-induced apoptosis. However, the mechanism of MAVS-mediated apoptosis induction remains unclear. Here, we show that MAVS binds to voltage-dependent anion channel 1 (VDAC1) and induces apoptosis by caspase-3 activation, which is independent of its role in innate immunity. MAVS modulates VDAC1 protein stability by decreasing its degradative K48-linked ubiquitination. In addition, MAVS knockout mouse embryonic fibroblasts (MEFs) display reduced VDAC1 expression with a consequent reduction of the vesicular stomatitis virus (VSV)-induced apoptosis response. Notably, the upregulation of VDAC1 triggered by VSV infection is completely abolished in MAVS knockout MEFs. We thus identify VDAC1 as a target of MAVS and describe a novel mechanism of MAVS control of virus-induced apoptotic cell death.  相似文献   

10.
Many vertebrate and insect viruses possess antiapoptotic genes that are required for their infectivity. This led to the hypothesis that apoptosis is an innate immunoresponse important for limiting virus infections. The role of apoptosis may be especially important in insect antiviral defense because of the lack of adaptive immunity. However, the cellular mechanism that elicits apoptosis in response to viral infection in insects has not been determined. Using an in vivo infection system with the mosquito baculovirus CuniNPV (Culex nigripalpus nucleopolyhedrovirus), we demonstrated that michelob_x (mx), the mosquito ortholog of Drosophila proapoptotic gene reaper, is specifically induced in larval midgut cells following viral infection. Interestingly, the dynamics of mx induction corresponds with the outcome of the infection. In the permissive mosquito C. quinquefasciatus, a slow induction of mx failed to induce prompt apoptosis, and the infected cells eventually undergo necrosis with heavy loads of encapsulated viruses. In contrast, in the refractory mosquito Aedes aegypti, a rapid induction of mx within 30 min p.i. is followed by apoptosis within 2-6 h p.i., suggesting a possible role for apoptosis in limiting viral infection. When the execution of apoptosis was delayed by caspase inhibitors, viral gene expression became detectable in the A. aegypti larvae.  相似文献   

11.
Many viruses have evolved strategies to either evade or hijack host cell immune programs, as a means of promoting their own reproduction. For example, the human cytomegalovirus (HCMV) immediate-early protein vMIA/UL37ex1 inhibits host cell apoptosis, and its expression during infection aids virus replication. Here it is shown that stable expression of vMIA/UL37ex1 reduces cleavage of the innate immune response-proteins MAVS and RIG-I by caspases during apoptosis. Unexpectedly, it is demonstrated that RIG-I, but not MAVS, is degraded during HCMV infection. This process occurs in a non-apoptotic manner, and provides new evidence that HCMV may have evolved a unique strategy to evade RIG-I-mediated immune responses.  相似文献   

12.
13.
Human pathogenic Chlamydia trachomatis have evolved sophisticated mechanisms to manipulate host cell signalling pathways in order to prevent apoptosis. We show here that host cells infected with C. trachomatis resist apoptosis induced by polyI:C, a synthetic double‐stranded RNA that mimics viral infections. Infected cells displayed significantly reduced levels of PARP cleavage, caspase‐3 activation and a decrease in the TUNEL positive population in the presence of polyI:C. Interestingly, the chlamydial block of apoptosis was upstream of the initiator caspase‐8. Processing of caspase‐8 was reduced in infected cells and coincided with a decrease in Bid truncation and downstream caspase‐9 cleavage. Moreover, the enzymatic activity of caspase‐8, measured by a luminescent substrate, was significantly reduced in infected cells. Caspase‐8 inhibition by Chlamydia was dependent on cFlip as knock‐down of cFlip decreased the chlamydial block of caspase‐8 activation and consequently reduced apoptosis inhibition. Our data implicate that chlamydial infection interferes with the host cell's response to viral infections and thereby influences the fate of the cell.  相似文献   

14.
Hepatitis C virus (HCV) infection is sensed in the host cell by the cytosolic pathogen recognition receptor RIG-I. RIG-I signaling is propagated through its signaling adaptor protein MAVS to drive activation of innate immunity. However, HCV blocks RIG-I signaling through viral NS3/4A protease cleavage of MAVS on the mitochondrion-associated endoplasmic reticulum (ER) membrane (MAM). The multifunctional HCV NS3/4A serine protease is associated with intracellular membranes, including the MAM, through membrane-targeting domains within NS4A and also at the amphipathic helix α(0) of NS3. The serine protease domain of NS3 is required for both cleavage of MAVS, a tail-anchored membrane protein, and processing the HCV polyprotein. Here, we show that hydrophobic amino acids in the NS3 helix α(0) are required for selective cleavage of membrane-anchored portions of the HCV polyprotein and for cleavage of MAVS for control of RIG-I pathway signaling of innate immunity. Further, we found that the hydrophobic composition of NS3 helix α(0) is essential to establish HCV replication and infection. Alanine substitution of individual hydrophobic amino acids in the NS3 helix α(0) impaired HCV RNA replication in cells with a functional RIG-I pathway, but viral RNA replication was rescued in cells lacking RIG-I signaling. Therefore, the hydrophobic amphipathic helix α(0) of NS3 is required for NS3/4A control of RIG-I signaling and HCV replication by directing the membrane targeting of both viral and cellular substrates.  相似文献   

15.

Background  

IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region.  相似文献   

16.
Herpes simplex virus 1 (HSV-1) is a enveloped, double stranded DNA virus that is the causative agent of various diseases including cold sores, encephalitis, and ocular keratitis. Previous research has determined that HSV-1 modulates cellular apoptotic pathways. Apoptosis is triggered in infected cells early in infection; however, later in the infection the apoptotic response is suppressed due to the expression of several viral apoptotic antagonists. This sets us a delicate balance between pro- and anti-apoptotic processes during the lytic phase of infection. Several studies have demonstrated that the apoptotic balance can be shifted during infection of certain cell types, leading to apoptosis of the infected cells (HSV-1-dependent apoptosis). For example, HEp-2 cells infected with an ICP27-null recombinant HSV-1 virus undergo HSV-1-dependent apoptosis. Differences in the sensitivity to HSV-1-dependent apoptosis have been revealed. Although many tumor cells have been found to be highly sensitive to this apoptotic response, with the exception hematological cells, all primary human cells tested prior to this study have been shown to be resistant to HSV-1-dependent apoptosis. Here, we demonstrate that early passage neonatal and adult human keratinocytes, which are usually the first cells to encounter HSV-1 in human infection and support the lytic stage of the life cycle, display membrane blebbing and ballooning, chromatin condensation, caspase activation, and cleavage of cellular caspase substrates when infected with an ICP27-null recombinant of HSV-1. Furthermore, caspase activation is needed for the efficient apoptotic response. These results suggest that apoptotic machinery may be a target for modulating HSV-disease in patients.  相似文献   

17.
Hepatitis C virus (HCV) is the cause of one of the most prevalent viral infections worldwide. Upon infection, the HCV genome activates the RIG‐I‐MAVS signalling pathway leading to the production of direct antiviral effectors which prevent important steps in viral propagation. MAVS localizes at peroxisomes and mitochondria and coordinate the activation of an effective antiviral response: peroxisomal MAVS is responsible for a rapid but short‐termed antiviral response, while the mitochondrial MAVS is associated with the activation of a stable response with delayed kinetics. The HCV NS3‐4A protease was shown to specifically cleave the mitochondrial MAVS, inhibiting the downstream response. In this study, we have analysed whether HCV NS3‐4A is also able to cleave the peroxisomal MAVS and whether this would have any effect on the cellular antiviral response. We show that NS3‐4A is indeed able to specifically cleave this protein and release it into the cytosol, a mechanism that seems to occur at a similar kinetic rate as the cleavage of the mitochondrial MAVS. Under these conditions, RIG‐I‐like receptor (RLR) signalling from peroxisomes is blocked and antiviral gene expression is inhibited. Our results also show that NS3‐4A is able to localize at peroxisomes in the absence of MAVS. However, mutation studies have shown that this localization pattern is preferred in the presence of a fully cleavable MAVS. These findings present evidence of a viral evasion strategy that disrupts RLR signalling on peroxisomes and provide an excellent example of how a single viral evasion strategy can block innate immune signalling from different organelles.  相似文献   

18.
Apoptosis serves as an important defense strategy employed by host cells against viral invasion. Many viruses contain the anti-apoptotic genes to block the defense-by-death response of host cells. In this study, we tried to identify the putative anti-apoptotic genes in white spot syndrome virus (WSSV) genome. We confirmed that actinomycin D could induce apoptosis of shrimp primary cells. However, the apoptosis triggered by actinomycin D was inhibited by WSSV infection. As mutants of Autographa californica nucleopolyhedrovirus (AcMNPV), AcMNPVDelta35k/pol+ lacks a functional P35 gene undergoing apoptosis and its infection could induce Sf9 cell apoptosis. To identify the putative apoptotic suppressor gene of WSSV, overlapping cosmid clones representing the entire WSSV genome were individually cotransfected along with genome DNA of AcMNPVDeltaP35k/pol+. Using this marker rescue assay, a WSSV DNA fragment that was able to rescue AcMNPVDeltaP35k/pol+ infection in Sf9 cells was isolated. By further sequence analysis and rescue assay, the ORF390 was identified as a novel anti-apoptotic gene. The ORF displays two putative caspase9 cleavage sites LLVETDGPS, VKLEHDGSK, and a caspase3 cleavage site EEDEVDGVP. The ORF was cloned into the pIE1 vector and then the recombinant vector was transfected into Sf9 cells. The Sf9 cells did not show obvious characteristics of apoptosis when infected with AcMNPVDeltaP35k/pol+. And the transient expression of ORF390 allowed AcMNPVDeltaP35k/pol+ replication in Sf9 cells and resulted in the formation of polyhedra successfully. The results indicate that function of ORF390 in WSSV is a kind of apoptotic suppressor like P35 in AcMNPV.  相似文献   

19.
20.
A critical aspect of AIDS pathogenesis that remains unclear is the mechanism by which human immunodeficiency virus type 1 (HIV-1) induces death in CD4(+) T lymphocytes. A better understanding of the death process occurring in infected cells may provide valuable insight into the viral component responsible for cytopathicity. This would aid the design of preventive treatments against the rapid decline of CD4(+) T cells that results in AIDS. Previously, apoptotic cell death has been reported in HIV-1 infections in cultured T cells, and it has been suggested that this could affect both infected and uninfected cells. To evaluate the mechanism of this effect, we have studied HIV-1-induced cell death extensively by infecting several T-cell lines and assessing the level of apoptosis by using various biochemical and flow cytometric assays. Contrary to the prevailing view that apoptosis plays a prominent role in HIV-1-mediated T-cell death, we found that Jurkat and H9 cells dying from HIV-1 infection fail to exhibit the collective hallmarks of apoptosis. Among the parameters investigated, Annexin V display, caspase activity and cleavage of caspase substrates, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) signal, and APO2.7 display were detected at low to negligible levels. Neither peptide caspase inhibitors nor the antiapoptotic proteins Bcl-x(L) or v-FLIP could prevent cell death in HIV-1-infected cultures. Furthermore, Jurkat cell lines deficient in RIP, caspase-8, or FADD were as susceptible as wild-type Jurkat cells to HIV-1 cytopathicity. These results suggest that the primary mode of cytopathicity by laboratory-adapted molecular clones of HIV-1 in cultured cell lines is not via apoptosis. Rather, cell death occurs most likely via a necrotic or lytic form of death independent of caspase activation in directly infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号