首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lutein is a dietary carotenoid well known for its role as an antioxidant in the macula, and recent reports implicate a role for lutein in cognitive function. Lutein is the dominant carotenoid in both pediatric and geriatric brain tissue. In addition, cognitive function in older adults correlated with macular and postmortem brain lutein concentrations. Furthermore, lutein was found to preferentially accumulate in the infant brain in comparison to other carotenoids that are predominant in diet. While lutein is consistently related to cognitive function, the mechanisms by which lutein may influence cognition are not clear. In an effort to identify potential mechanisms through which lutein might influence neurodevelopment, an exploratory study relating metabolite signatures and lutein was completed. Post-mortem metabolomic analyses were performed on human infant brain tissues in three regions important for learning and memory: the frontal cortex, hippocampus, and occipital cortex. Metabolomic profiles were compared to lutein concentration, and correlations were identified and reported here. A total of 1276 correlations were carried out across all brain regions. Of 427 metabolites analyzed, 257 were metabolites of known identity. Unidentified metabolite correlations (510) were excluded. In addition, moderate correlations with xenobiotic relationships (2) or those driven by single outliers (3) were excluded from further study. Lutein concentrations correlated with lipid pathway metabolites, energy pathway metabolites, brain osmolytes, amino acid neurotransmitters, and the antioxidant homocarnosine. These correlations were often brain region—specific. Revealing relationships between lutein and metabolic pathways may help identify potential candidates on which to complete further analyses and may shed light on important roles of lutein in the human brain during development.  相似文献   

2.
Many birds obtain colorful carotenoid pigments from the diet and deposit them into growing tissues to develop extravagant red, orange or yellow sexual ornaments. In these instances, it is often unclear whether all dietary pigments are used as integumentary colorants or whether certain carotenoids are preferentially excluded or incorporated into tissues. We examined the carotenoid profiles of three New World passerines that display yellow plumage coloration—the yellow warbler (Dendroica petechia), common yellowthroat (Geothlypis trichas) and evening grosbeak (Coccothraustes vespertinus). Using high-performance liquid chromatography, we found that all species used only one carotenoid—lutein—to color their plumage yellow. Analyses of blood carotenoids (which document those pigments taken up from the diet) in two of the species, however, revealed the presence of two dietary xanthophylls—lutein and zeaxanthin—that commonly co-occur in plants and animals. These findings demonstrate post-absorptive selectivity of carotenoid deposition in bird feathers. To learn more about the site of pigment discrimination, we also analyzed the carotenoid composition of lipid fractions from the follicles of immature yellow-pigmented feathers in G. trichas and D. petechia and again detected both lutein and zeaxanthin. This suggests that selective lutein incorporation in feathers is under local control at the maturing feather follicle.  相似文献   

3.
Abstract Carotenoids perform important biological actions in animal tissues, including contributing antioxidant protection. However, the function of transmission of maternal carotenoids to bird eggs is still largely unknown. We made a yolk biopsy of yellow-legged gull (Larus michahellis) eggs and found that the concentration of lutein declined with laying date and across the laying order and increased with egg mass. The concentration of all the main carotenoids (lutein, zeaxanthin, and dehydrolutein) pooled also declined with date and increased with egg mass. We also performed a partial reciprocal cross-fostering of eggs between clutches and investigated the covariation between morphology, T cell-mediated immunity, and plasma carotenoid concentrations of the chicks and carotenoid concentrations in their original eggs. Absolute plasma carotenoid concentrations did not covary with those in the yolk, whereas a positive covariation was found for relative concentrations. Yolk and absolute plasma carotenoid concentrations positively predicted chick body mass and size but not the intensity of the cell-mediated immune response. Thus, yolk carotenoid concentrations may affect chick carotenoid profile and growth, possibly mediating early maternal effects. However, rearing conditions also contributed to determining relative concentrations of circulating carotenoids. Since yolk or plasma antioxidant capacity did not correlate with carotenoid concentrations, future studies of maternal effects mediated by antioxidants should integrate information on carotenoids with information on other components of the antioxidant systems.  相似文献   

4.
Lycopene is the major carotenoid in tomatoes. Tomatoes contain a matrix of many bioactive components, including vitamin C, vitamin E, other carotenoids (a-, beta-, gamma- carotene, lutein), and flavonoids. Their synergistic interactions, when used in combination, may be responsible for the observed beneficial effects of tomato-based products. This study investigated the synergistic antioxidant activity of lycopene in combination with beta-carotene, vitamin E, and lutein. A liposome system was used to test the synergistic antioxidant activity. The carotenoid mixtures were more efficient in protecting liposome from oxidation than the individual carotenoid. Mixtures of lycopene and vitamin E appear to have the greatest synergistic antioxidant activity.  相似文献   

5.
Maternal allocation of antioxidants to egg yolk has been shown to affect early embryonic development and nestling survival. In environments with high levels of anthropogenic pollution, antioxidants (such as carotenoids) are important to protect the body from elevated oxidative stress. Thus, female allocation of antioxidants to yolk may be traded off against self-maintenance. Here we investigate maternal reproductive investment with respect to yolk carotenoid content and composition in relation to subsequent female condition and carotenoid status in urban and rural great tits Parus major. We found no differences between the urban and rural populations in total yolk carotenoids, egg mass, clutch size, hatching success, or female carotenoid status. Interestingly, however, rural eggs contained more zeaxanthin, a more potent antioxidant than lutein, which suggests that rural embryos have better antioxidant protection than urban embryos. Whether rural females actively transfer more zeaxanthin to the yolk or whether it passively reflects differences in dietary access or uptake needs to be further investigated. This highlights the importance of carotenoid identity and composition in future studies of carotenoid physiology, ecology, and signaling.  相似文献   

6.
β-Carotene is thought to be a chain-breaking antioxidant, even though we have no information about the mechanism of its antioxidant activity. Using electron-spin resonance (ESR) spectroscopy coupled to the spin-trapping technique, we have studied the effect of β-carotene and lutein on the radical adducts of the spin-trap PBN (N-t -butyl-α-phenylnitrone) generated by the metal-ion breakdown of different tert -butyl hydroperoxide (t BOOH) concentrations in methylene chloride. The peroxyl radical, along with an oxidation product of PBN (the PBNOx), trapped at room temperature from the breakdown of high concentration of t BOOH (1 M), were quenched by β-carotene or lutein, in competition with the spin-trapping agent. However, carotenoids were not able to quench the alkoxyl and methyl radicals generated in the reaction carried out in the presence of low t BOOH concentration (1 mM). The reaction between carotenoids and the peroxyl radical was also carried out in the absence of the spin trap, at 77 K: Under these different experimental conditions, we did not detect any radical species deriving from carotenoids. In the same system, a further evidence of the peroxyl radical quenching by β-carotene and lutein was obtained. The antioxidant activity of vitamin E was also tested, for comparison with the carotenoids. In the presence of α-tocopherol, peroxyl and alkoxyl radicals were quenched, and the tocopheroxyl radical was detected. Our data provide the first direct evidence that carotenoids quench peroxyl radicals. Under our experimental conditions, we did not detect any carotenoid radical species that could derive from the interaction with the peroxyl radical. The radical-trapping activity of β-carotene and lutein demonstrated in this chemical reaction contributes to our understanding carotenoid antioxidant action in biological systems. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 299–304, 1998  相似文献   

7.
Major carotenoids of human plasma and tissues were exposed to radical-initiated autoxidation conditions. The consumption of lutein and zeaxanthin, the only carotenoids in the retina, and lycopene and beta-carotene, the most effective quenchers of singlet oxygen in plasma, were compared. Under all conditions of free radical-initiated autoxidation of carotenoids which were investigated, the breakdown of lycopene and beta-carotene was much faster than that of lutein and zeaxanthin. Under the influence of UV light in presence of Rose Bengal, by far the highest breakdown rate was found for beta-carotene, followed by lycopene. Bleaching of carotenoid mixtures mediated by NaOCl, addition of azo-bis-isobutyronitril (AIBN), and the photoirradiation of carotenoid mixtures by natural sunlight lead to the following sequence of breakdown rates: lycopene > beta-carotene > zeaxanthin > lutein. The slow degradation of the xanthophylls zeaxanthin and lutein may be suggested to explain the majority of zeaxanthin and lutein in the retina of man and other species. In correspondence to that, the rapid degradation of beta-carotene and lycopene under the influence of natural sunlight and UV light is postulated to be the reason for the almost lack of those two carotenoids in the human retina. Nevertheless, a final proof of that theory is lacking.  相似文献   

8.
The estrildid finches (Aves: Passeriformes: Estrildidae) of Africa, Asia, and Australia have been the focus of several recent tests of sexual selection theory. Many estrildids display bright red, orange, or yellow colors in the beak or plumage, which typically are generated by the presence of carotenoid pigments. In this study, we used high-performance liquid chromatography to investigate the carotenoid content of feathers and other colorful tissues in seven species of estrildids. Star finches (Neochmia ruficauda) and diamond firetails (Stagonopleura guttata) circulated two main dietary carotenoids (lutein and zeaxanthin) through the blood and liver and used both to acquire a yellow plumage color. However, five other estrildids (common waxbill, Estrilda astrild; black-rumped waxbill, Estrilda troglodytes; zebra waxbill, Amandava subflava; red avadavat, Amandava amandava; and zebra finch, Taeniopygia guttata) circulated these same dietary carotenoids along with two metabolites (dehydrolutein and anhydrolutein) through the blood and/or liver and used all four as yellow plumage colorants. We subsequently tracked the distribution of these pigments using a published phylogeny of estrildid finches to determine the evolutionary pattern of carotenoid metabolism in these birds. We found that finches from the most ancient tribe of estrildids (Estrildini) possessed the ability to metabolize dietary carotenoids. Although carotenoids from the most ancestral extant estrildid species have yet to be analyzed, we hypothesize (based on their relationships with other songbirds known to have such metabolic capabilities) that these finches inherited from their ancestors the capability to metabolize carotenoids. Interestingly, later in estrildid evolution, certain taxa lost the ability to metabolize dietary carotenoids (e.g., in the Poephilini), suggesting that the occurrence of carotenoid metabolism can be labile and is likely shaped by the relative costs and benefits of color signaling across different species.  相似文献   

9.
Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.  相似文献   

10.
This trial examined effects of lutein supplied from maternal (i.e., in ovo) and dietary routes on cutaneous basophil hypersensitivity responses in chickens. Chicks hatched from one of two in ovo carotenoid levels (n=100/level; carotenoid-replete or carotenoid-deplete eggs) were fed one of two diet lutein levels (0 or 40 mg diet lutein/kg diet). At 14 d post-hatch, phytohemagglutinin (PHA) was injected into the wing web, and thickness and leukocyte populations were measured at 0 to 48 h. PHA increased wing web thickness at 4 to 48 h post-PHA (p<0.05), and the swelling response was most related to macrophage numbers in the wing web. Swelling occurred more rapidly in chicks from carotenoid-deplete eggs (p<0.05), but eventually reached a greater thickness in chicks from carotenoid-replete eggs (p<0.05). Differences in leukocyte infiltration occurred due to diet and in ovo carotenoid exposure, and indicate that pre- and post-hatch carotenoid exposure had additive or synergistic effects on the PHA-induced wing web response. Evaluation of the cellular contents of the injection site is a much better indicator of the immunomodulatory effects of lutein than measurements of the amount of swelling.  相似文献   

11.
The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.  相似文献   

12.
The carotenoid pigments of the hepatopancreas, ovaries and epidermis of Carcinus maenas were investigated. The following pigments were identified: β-carotene, δ-carotene, echinenone, isocryptoxanthin, canthaxanthin, lutein, zeaxanthin, flavoxanthin and astacene.
The relative abundance of these pigments in the three tissues and the presence of possible hydroxy and keto intermediates suggest the metabolism of astaxanthin from β-carotene. The metabolic pathway in Carcinus is discussed in relation to recent studies on other invertebrates.  相似文献   

13.
The carotenoid pigments of the hepatopancreas, ovaries and epidermis of Carcinus maenas were investigated. The following pigments were identified: β-carotene, δ-carotene, echinenone, isocryptoxanthin, canthaxanthin, lutein, zeaxanthin, flavoxanthin and astacene.
The relative abundance of these pigments in the three tissues and the presence of possible hydroxy and keto intermediates suggest the metabolism of astaxanthin from β-carotene. The metabolic pathway in Carcinus is discussed in relation to recent studies on other invertebrates.  相似文献   

14.
Carotenoids and fat-soluble vitamins play crucial roles in several physiological processes. Yolk carotenoid composition may be influenced by the bird's dietary intake and by the possible discrimination during carotenoid metabolism. Information regarding the pigment composition of passerine eggs is very limited. In the present 2-year study, we determined the carotenoid and vitamin concentrations and the percentage profile of carotenoid components in collared flycatcher (Ficedula albicollis) eggs. The major carotenoid was lutein in both years, followed by cis-lutein, zeaxanthin and beta-carotene as other significant components. Carotenoid concentration was higher in 2000 than in 2001. As caterpillar abundance and ambient temperature was lower in 2001 than in 2000, we suggest that the decreased availability of carotenoid-rich resources and the elevated antioxidant demand of the female restricted the carotenoid allocation to the eggs. Our study is the first to indicate that the concentration and profile of yolk carotenoids may considerably vary in the same wild bird population between breeding seasons with different environmental conditions. Compared to other birds, the yolk of this species was relatively rich in vitamins A and E. Vitamin E concentration was positively correlated with total carotenoid concentration, which may be beneficial for the nestlings as these antioxidants synergistically provide better protection.  相似文献   

15.
As in humans and monkeys, lutein [(3R,3'R,6'R)-beta,epsilon-carotene-3,3'-diol] and zeaxanthin [a mixture of (3R,3'R)-beta,beta-carotene-3,3'diol and (3R,3'S-meso)-beta,beta-carotene-3,3'-diol] are found in substantial amounts in the retina of the Japanese quail Coturnix japonica. This makes the quail retina an excellent nonprimate small animal model for studying the metabolic transformations of these important macular carotenoids that are thought to play an integral role in protection against light-induced oxidative damage such as that found in age-related macular degeneration (AMD). In this study, we first identified the array of carotenoids present in the quail retina using C30 HPLC coupled with in-line mass spectral and photodiode array detectors. In addition to dietary lutein (2.1%) and zeaxanthin (11.8%), we identified adonirubin (5.4%), 3'-oxolutein (3.8%), meso-zeaxanthin (3.0%), astaxanthin (28.2%), galloxanthin (12.2%), epsilon,epsilon-carotene (18.5%), and beta-apo-2'-carotenol (9.5%) as major ocular carotenoids. We next used deuterium-labeled lutein and zeaxanthin as dietary supplements to study the pharmacokinetics and metabolic transformations of these two ocular pigments in serum and ocular tissues. We then detected and quantitated labeled carotenoids in ocular tissue using both HPLC-coupled mass spectrometry and noninvasive resonance Raman spectroscopy. Results indicated that dietary zeaxanthin is the precursor of 3'-oxolutein, beta-apo-2'-carotenol, adonirubin, astaxanthin, galloxanthin, and epsilon,epsilon-carotene, whereas dietary lutein is the precursor for meso-zeaxanthin. Studies also revealed that the pharmacokinetic patterns of uptake, carotenoid absorption, and transport from serum into ocular tissues were similar to results observed in most human clinical studies.  相似文献   

16.
To determine the cause of the unique yellow coloration in mandibular glands of soybean-fed Helicoverpa zea larvae, the accumulation of carotenoids in various tissues of last instar larvae fed soybean, cotton and tomato foliage was quantified. Five carotenoids were detected in the foliage of all host plants but at significantly different concentrations. Xanthophylls rather than carotenes were most likely to accumulate in larval tissues. Carotenoids accumulated at different rates and some were significantly affected by larval diet. Highest levels of carotenoid accumulation, notably lutein, were detected in the testes, followed by midgut epithelium, fat body and integument. The midgut epithelium contained the greatest and the testes the least diversity of carotenoid types. Low levels of lutein were detected in both labial and mandibular glands. Tomato foliage had the highest carotenoid content and caterpillar tissues fed these leaves often had the highest amounts of carotenoid. However, the accumulation of carotenoids did not protect larvae from antibiotic effects of tomato foliage because these caterpillars had the highest mortality and slowest growth rates of all the three host plants. Transport and absorption of lipid and oxidative stress may be some reasons for differential carotenoid accumulation.  相似文献   

17.
Many birds acquire carotenoid pigments from the diet that they deposit into feathers and bare parts to develop extravagant sexual coloration. Although biologists have shown interest in both the mechanisms and function of these colorful displays, the carotenoids ingested and processed by these birds are poorly described. Here we document the carotenoid-pigment profile in the diet, blood and tissue of captive male and female zebra finches (Taeniopygia guttata). Dietary carotenoids including: lutein; zeaxanthin; and β-cryptoxanthin were also present in the plasma, liver, adipose tissue and egg-yolk. These were accompanied in the blood and tissues by a fourth pigment, 2′,3′-anhydrolutein, that was absent from the diet. To our knowledge, this is the first reported documentation of anhydrolutein in any avian species; among animals, it has been previously described only in human skin and serum and in fish liver. We also identified anhydrolutein in the plasma of two closely related estrildid finch species (Estrilda astrild and Sporaeginthus subflavus). Anhydrolutein was the major carotenoid found in zebra finch serum and liver, but did not exceed the concentration of lutein and zeaxanthin in adipose tissue or egg yolk. Whereas the percent composition of zeaxanthin and β-cryptoxanthin were similar between diet and plasma, lutein was comparatively less abundant in plasma than in the diet. Lutein also was proportionally deficient in plasma from birds that circulated a higher percentage of anhydrolutein. These results suggest that zebra finches metabolically derive anhydrolutein from dietary sources of lutein. The production site and physiological function of anhydrolutein have yet to be determined.  相似文献   

18.
Carotenoid pigments were extracted from 29 feather patches from 25 species of cotingas (Cotingidae) representing all lineages of the family with carotenoid plumage coloration. Using high-performance liquid chromatography (HPLC), mass spectrometry, chemical analysis, and 1H-NMR, 16 different carotenoid molecules were documented in the plumages of the cotinga family. These included common dietary xanthophylls (lutein and zeaxanthin), canary xanthophylls A and B, four well known and broadly distributed avian ketocarotenoids (canthaxanthin, astaxanthin, ??-doradexanthin, and adonixanthin), rhodoxanthin, and seven 4-methoxy-ketocarotenoids. Methoxy-ketocarotenoids were found in 12 species within seven cotinga genera, including a new, previously undescribed molecule isolated from the Andean Cock-of-the-Rock Rupicola peruviana, 3??-hydroxy-3-methoxy-??,??-carotene-4-one, which we name rupicolin. The diversity of cotinga plumage carotenoid pigments is hypothesized to be derived via four metabolic pathways from lutein, zeaxanthin, ??-cryptoxanthin, and ??-carotene. All metabolic transformations within the four pathways can be described by six or seven different enzymatic reactions. Three of these reactions are shared among three precursor pathways and are responsible for eight different metabolically derived carotenoid molecules. The function of cotinga plumage carotenoid diversity was analyzed with reflectance spectrophotometry of plumage patches and a tetrahedral model of avian color visual perception. The evolutionary history of the origin of this diversity is analyzed phylogenetically. The color space analyses document that the evolutionarily derived metabolic modifications of dietary xanthophylls have resulted in the creation of distinctive orange-red and purple visual colors.  相似文献   

19.
The pigment composition of the light-harvesting complexes (LHCs) of higher plants is highly conserved. The bulk complex (LHCIIb) binds three xanthophyll molecules in combination with chlorophyll (Chl) a and b. The structural requirements for binding xanthophylls to LHCIIb have been examined using an in vitro reconstitution procedure. Reassembly of the monomeric recombinant LHCIIb was performed using a wide range of native and nonnative xanthophylls, and a specific requirement for the presence of a hydroxy group at C-3 on a single beta-end group was identified. The presence of additional substituents (e.g. at C-4) did not interfere with xanthophyll binding, but they could not, on their own, support reassembly. cis isomers of zeaxanthin, violaxanthin, and lutein were not bound, whereas all-trans-neoxanthin and different chiral forms of lutein and zeaxanthin were incorporated into the complex. The C-3 and C-3' diols lactucaxanthin (a carotenoid native to many plant LHCs) and eschscholtzxanthin (a retro-carotenoid) both behaved very differently from lutein and zeaxanthin in that they would not support complex reassembly when used alone. Lactucaxanthin could, however, be bound when lutein was also present, and it showed a high affinity for xanthophyll binding site N1. In the presence of lutein, lactucaxanthin was readily bound to at least one lutein-binding site, suggesting that the ability to bind to the complex and initiate protein folding may be dependent on different structural features of the carotenoid molecule. The importance of carotenoid end group structure and ring-to-chain conformation around the C-6-C-7 torsion angle of the carotenoid molecule in binding and complex reassembly is discussed.  相似文献   

20.
Studies of brilliant carotenoid‐based coloration in birds have traditionally centred on the role that these colours play in attracting mates. More recently, biologists have begun to take a biochemical approach to understanding the types of pigments found in feathers and how these relate to the expression of ornamental coloration. Nevertheless, surprisingly few studies have assessed the types and amounts of carotenoids present in the diet or blood of animals in relation to season, sex, condition or sexually attractive colour traits, particularly for wild birds. It is conceivable not only that the total concentration of pigments available is an important predictor of sexual attractiveness and mate quality, but also that specific pigments vary among individuals and play more important physiological and pigmenting roles than others. We investigated the carotenoid content of blood and feathers in wild‐caught, yellow‐pigmented male American goldfinches (Carduelis tristis) throughout the year to determine the optimal biochemical strategy for becoming colourful. We found that birds acquired two main yellow hydroxycarotenoids (lutein and zeaxanthin) from the diet during both moulting and non‐moulting periods. Blood concentrations of both pigments changed significantly over time, with moulting birds accumulating higher levels of both lutein and zeaxanthin, but proportionally more zeaxanthin, than non‐moulting birds. Moulting birds that acquired more lutein and more zeaxanthin in blood deposited a higher concentration of carotenoid pigments (canary xanthophylls A and B) into plumage and acquired more colourful feathers. In sum, these results indicate that (a) the types of dietary carotenoids available across seasons do not change in American goldfinches, (b) seasonal fluctuations in plasma‐carotenoid signatures may result from differences in dietary access or pigment processing, and (c) the best biochemical strategy for becoming a colourful, wild male goldfinch is to accumulate as many dietary/blood pigments as possible during moult. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 83 , 273–280.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号