首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Dengue viruses (DENVs) are the viruses responsible for dengue infection which affects lungs, liver, heart and also other organs of individuals. DENVs consist of the group of four serotypically diverse dengue viruses transmitted in tropical and sub-tropical countries of world. Aedes mosquito is the principal vector which spread the infection from infected person to healthy humans. DENVs can cause different syndromes depending on serotype of virus which range from undifferentiated mild fever to dengue hemorrhagic fever resulting in vascular leakage due to release of cytokine and Dengue shock syndrome with fluid loss and hypotensive shock, or other severe manifestations such as bleeding and organ failure. Increase in dengue cases in pediatric population is a major concern. Transmission of dengue depends on various factors like temperature, rainfall, and distribution of Aedes aegypti mosquitoes. The present review describes a comprehensive overview of dengue, pathophysiology, diagnosis, treatment with an emphasis on potential of exosomes as biomarkers for early prediction of dengue in pediatrics.

  相似文献   

2.
While virus-like particles (VLPs) containing subgenomic replicons, which can transduce replicons into target cells efficiently for studying viral replication and vectors of gene therapy and vaccine, have been established for several flaviviruses, none has been reported for the four serotypes of dengue virus, the causal agent of the most important arboviral diseases in this century. In this study, we successfully established a cell line stably expressing the precursor membrane/envelope (PrM/E) proteins of dengue virus type 2 (DENV2), which can package a DENV2 replicon with deletion of PrM/E genes and produce single-round infectious VLPs. Moreover, it can package a similar replicon of different serotype, dengue virus type 4, and produce infectious chimeric VLPs. To our knowledge, this study reports for the first time replicon-containing VLPs of dengue virus. Moreover, this convenient system has potential as a valuable tool to study encapsidation of dengue virus and to develop novel chimeric VLPs containing dengue virus replicon as vaccine in the future.  相似文献   

3.
Virus-like particles (VLPs) are formed by the self-assembly of envelope and/or capsid proteins from many viruses. Some VLPs have been proven successful as vaccines, and others have recently found applications as carriers for foreign antigens or as scaffolds in nanoparticle biotechnology. However, production of VLP was usually impeded due to low water-solubility of recombinant virus capsid proteins. Previous studies revealed that virus capsid and envelope proteins were often posttranslationally modified by SUMO in vivo, leading into a hypothesis that SUMO modification might be a common mechanism for virus proteins to retain water-solubility or prevent improper self-aggregation before virus assembly. We then propose a simple approach to produce VLPs of viruses, e.g., foot-and-mouth disease virus (FMDV). An improved SUMO fusion protein system we developed recently was applied to the simultaneous expression of three capsid proteins of FMDV in E. coli. The three SUMO fusion proteins formed a stable heterotrimeric complex. Proteolytic removal of SUMO moieties from the ternary complexes resulted in VLPs with size and shape resembling the authentic FMDV. The method described here can also apply to produce capsid/envelope protein complexes or VLPs of other disease-causing viruses.  相似文献   

4.
Transmission electron microscopy (TEM) was used to determine whether Acropora muricata coral colonies from the Great Barrier Reef (GBR), Australia, harboured virus-like particles (VLPs). VLPs were present in all coral colonies sampled at Heron Island (southern GBR) and in tagged coral colonies sampled in at least two of the three sampling periods at Lizard Island (northern GBR). VLPs were observed within gastrodermal and epidermal tissues, and on rarer occasions, within the mesoglea. These VLPs had similar morphologies to known prokaryotic and eukaryotic viruses in other systems. Icosahedral VLPs were observed most frequently, however, filamentous VLPs (FVLPs) and phage were also noted. There were no clear differences in VLP size, morphology or location within the tissues with respect to sample date, coral health status or site. The most common VLP morphotype exhibited icosahedral symmetry, 120–150 nm in diameter, with an electron-dense core and an electronlucent membrane. Larger VLPs of similar morphology were also common. VLPs occurred as single entities, in groups, or in dense clusters, either as free particles within coral tissues, or within membrane-bound vacuoles. VLPs were commonly observed within the perinuclear region, with mitochondria, golgi apparatus and crescent-shaped particles frequently observed within close proximity. The host(s) of these observed VLPs was not clear; however, the different sizes and morphologies of VLPs observed within A. muricata tissues suggest that viruses are infecting either the coral animal, zooxanthellae, intracellular bacteria and/or other coral-associated microbiota, or that the one host is susceptible to infection from more than one type of virus. These results add to the limited but emerging body of evidence that viruses represent another potentially important component of the coral holobiont.  相似文献   

5.
Isometric virus-like particles (VLPs) have been purified from cucumber leaf tissue. Three dsRNA segments with estimated molecular weights of 1.8, 1.1 and 1.0 × 106d have been isolated from VLPs occurring in CsCl density gradient fractions but were also readily detected in preparations from as little as 1 g of fresh leaf tissue. The VLPs resemble dsRNA containing cryptic viruses and have been named Cucumis sativus cryptic virus (CsCV).  相似文献   

6.
Many flaviviruses are emerging and reemerging pathogens, such as West Nile virus (WNV), dengue virus (DENV), yellow fever virus (YFV), and Japanese encephalitis virus. Serological assay is the dominant method for diagnosis of flavivirus infections in human. Because antibodies generated during flavivirus infections cross-react with other flavivirus members, plaque reduction neutralization test (PRNT) is the only available assay to determine the infecting flavivirus type.Since PRNT requires culturing raw viruses, it must be performed in biosafety level-3 or level-4 containment for many flaviviruses, and takes more than ten days to complete. To overcome these problems, we have developed flavivirus viral-like particles (VLPs) that could be used to replace raw viruses in the neutralization assay. The VLPs were prepared by trans packaging a luciferase-reporting replicon with viral structural proteins. This novel assay involves three simple steps: (ⅰ) VLPs from a panel of flaviviruses are incubated with flavivirus-infected sera at 37℃ for 1 h; (ⅱ)the neutralized VLPs are used to infect Vero cells; and (ⅲ) the infected cells are measured for luciferase activities at 22 h post-infection. The virus type whose VLP is most efficiently neutralized by the serum specimen (as quantified by the luciferase activities) is the etiologic agent. As a proof-of-concept, we show that a WNV-infected mouse serum neutralized the WNV VLP more efficiently and selectively than the DENV and YFV VLPs. Our results demonstrate that the VLP neutralization assay maintains the "gold standard" of the classic PRNT; importantly, it shortens the assay time from >10 days to <1 day, and can be performed in biosafety level-2 facility.  相似文献   

7.
Dengue fever, caused by dengue viruses(DENVs), is a widespread mosquito-borne zoonotic disease; however, there is no available anti-dengue vaccine for worldwide use. In the current study, a DNA vaccine candidate(pV-D4 ME) expressing prM-E protein of DENV serotype 4(DENV-4) was constructed, and its immunogenicity and protection were evaluated in immunocompetent BALB/c mice. The pV-D4 ME candidate vaccine induced effective humoral and cellular immunity of mice against DENV-4 in vivo when administered both at 50 μg and 5 μg through electroporation. Two weeks after receiving three immunizations, both doses of pV-D4 ME DNA were shown to confer effective protection against lethal DENV-4 challenge. Notably, at 6 months after the three immunizations, 50 μg, but not 5 μg, of pV-D4 ME could provide stable protection(100% survival rate) against DENV-4 lethal challenge without any obvious clinical signs. These results suggest that immunization with 50 μg pV-D4 ME through electroporation could confer effective and long-term protection against DENV-4, offering a promising approach for development of a novel DNA vaccine against DENVs.  相似文献   

8.
Vaccination is the single most effective way to control viral diseases. However, many currently used vaccines have safety concerns, efficacy issues or production problems. For other viral pathogens, classic approaches to vaccine development have, thus far, been unsuccessful. Virus-like particles (VLPs) are increasingly being considered as vaccine candidates because they offer significant advantages over many currently used vaccines or developing vaccine technologies. VLPs formed with structural proteins of Newcastle disease virus, an avian paramyxovirus, are a potential vaccine candidate for Newcastle disease in poultry. More importantly, these VLPs are a novel, uniquely versatile VLP platform for the rapid construction of effective vaccine candidates for many human pathogens, including genetically complex viruses and viruses for which no vaccines currently exist.  相似文献   

9.
The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1–13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction‐ or modification‐based control interventions at each target field site may be useful in assessing the probability of success.  相似文献   

10.
Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.  相似文献   

11.

Background

Dengue, a mosquito-borne viral disease, poses a significant global public health risk. In tropical countries such as India where periodic dengue outbreaks can be correlated to the high prevalence of the mosquito vector, circulation of all four dengue viruses (DENVs) and the high population density, a drug for dengue is being increasingly recognized as an unmet public health need.

Methodology/Principal findings

Using the knowledge of traditional Indian medicine, Ayurveda, we developed a systematic bioassay-guided screening approach to explore the indigenous herbal bio-resource to identify plants with pan-DENV inhibitory activity. Our results show that the alcoholic extract of Cissampelos pariera Linn (Cipa extract) was a potent inhibitor of all four DENVs in cell-based assays, assessed in terms of viral NS1 antigen secretion using ELISA, as well as viral replication, based on plaque assays. Virus yield reduction assays showed that Cipa extract could decrease viral titers by an order of magnitude. The extract conferred statistically significant protection against DENV infection using the AG129 mouse model. A preliminary evaluation of the clinical relevance of Cipa extract showed that it had no adverse effects on platelet counts and RBC viability. In addition to inherent antipyretic activity in Wistar rats, it possessed the ability to down-regulate the production of TNF-α, a cytokine implicated in severe dengue disease. Importantly, it showed no evidence of toxicity in Wistar rats, when administered at doses as high as 2g/Kg body weight for up to 1 week.

Conclusions/Significance

Our findings above, taken in the context of the human safety of Cipa, based on its use in Indian traditional medicine, warrant further work to explore Cipa as a source for the development of an inexpensive herbal formulation for dengue therapy. This may be of practical relevance to a dengue-endemic resource-poor country such as India.  相似文献   

12.
Dengue viruses (DENVs) are members of Flaviviridae family, which are associated with human disease. The envelope (E) protein plays an important role in viral infection. However, there is no effective antibody for clinical treatment due to antibody dependent enhancement of infection. In this study, using Systematic Evolution of Ligands by Exponential Enrichment (SELEX), we demonstrated the first aptamer (S15) that can bind to DENV-2 envelop protein domain III (ED3) with a high binding affinity. S15 was found to form a parallel quadruplex based on Quadfinder prediction, gel mobility assay and circular dichroism studies. Both the quadruplex structure and the sequence on 5’-end were necessary for the binding activity of S15. NMR titration experiments indicated that S15 bound to a highly conserved loop between βA and βB strands of ED3. Moreover, S15 can neutralize the infections by all four serotypes of DENVs. Our result provides a new opportunity in the development of DNA aptamers against DENVs in the future.  相似文献   

13.
Background/ObjectivesIn vitro studies have shown that dengue virus (DENV) can thwart the actions of interferon (IFN)-α/β and prevent the development of an antiviral state in infected cells. Clinical studies looking at gene expression in patients with severe dengue show a reduced expression of interferon stimulated genes compared to patients with dengue fever. Interestingly, there are conflicting reports as to the ability of DENV or other flaviviruses to inhibit IFN-α/β signaling.ConclusionsThe ability of DENVs to inhibit IFN-α/β signaling is conserved. Although some variation in the inhibition was observed, the moderate differences may be difficult to correlate with clinical outcomes. DENVs were unable to inhibit pSTAT1 in NHP cell lines, but their ability to inhibit pSTAT1 in primary Rhesus macaque dendritic cells suggests that this may be a cell specific phenomena or due to the transformed nature of the cell lines.  相似文献   

14.
Mosquito‐borne diseases resulting from the expansion of two key vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), continue to challenge whole regions and continents around the globe. In recent years there have been human cases of disease associated with Chikungunya, dengue and Zika viruses. In Europe, the expansion of Ae. albopictus has resulted in local transmission of Chikungunya and dengue viruses. This paper considers the risk that Ae. aegypti and Ae. albopictus represent for the U.K. and details the results of mosquito surveillance activities. Surveillance was conducted at 34 points of entry, 12 sites serving vehicular traffic and two sites of used tyre importers. The most common native mosquito recorded was Culex pipiens s.l. (Diptera: Culicidae). The invasive mosquito Ae. albopictus was detected on three occasions in southern England (September 2016, July 2017 and July 2018) and subsequent control strategies were conducted. These latest surveillance results demonstrate ongoing incursions of Ae. albopictus into the U.K. via ground vehicular traffic, which can be expected to continue and increase as populations in nearby countries expand, particularly in France, which is the main source of ex‐continental traffic.  相似文献   

15.

Objective

To assemble infectious bronchitis virus (IBV)-like particles bearing the recombinant spike protein and investigate the humoral immune responses in chickens.

Results

IBV virus-like particles (VLPs) were generated through the co-infection with three recombinant baculoviruses separately encoding M, E or the recombinant S genes. The recombinant S protein was sufficiently flexible to retain the ability to self-assemble into VLPs. The size and morphology of the VLPs were similar to authentic IBV particles. In addition, the immunogenicity of IBV VLPs had been investigated. The results demonstrated that the efficiency of the newly generated VLPs was comparable to that of the inactivated M41 viruses in eliciting IBV-specific antibodies and neutralizing antibodies in chickens via subcutaneous inoculation.

Conclusions

This work provides basic information for the mechanism of IBV VLP formation and develops a platform for further designing IBV VLP-based vaccines against IBV or other viruses.
  相似文献   

16.
17.
Chronic infection with certain types of human papillomaviruses (HPV), especially HPV-16 and HPV-18, leads to the development of cervical cancer. Prophylactic HPV vaccines based on HPV virus like particles (VLPs) have now been developed. The commercial vaccines, Gardasil and Cervarix are clinically effective in preventing HPV infection but do not have a therapeutic effect against existing chronic HPV infections. However, papillomavirus (PV) VLPs elicit strong cytotoxic T cell (CTL) responses and PV VLPs without any adjuvant have therapeutic effects in animal PV infection model. Alum in Gardasil, Alum and 3-O-deacylated-4′-monophosphoryl lipid A (ASO4) in Cervarix may stimulate IL10 production and inhibit the Th1, CTL immune response of immunized individuals. PV VLPs also stimulate the production of IL10 by CD4+ T cells, which prevent their CTL generation effect as a therapeutic vaccine. Neutralizing IL10 at the time of PV VLPs immunization increases cytotoxic T cell responses. PV VLPs incorporating PV early protein E2, 6 and 7, together with immune stimulator that promote strong type 1 responses, and at the same time blocking the effect of IL10 may have therapeutic effect against HPV infection related diseases and are worth further basic and clinical investigation.  相似文献   

18.
Emerging viruses pose a major threat to humans and livestock with global public health and economic burdens. Vaccination remains an effective tool to reduce this threat, and yet, the conventional cell culture often fails to produce sufficient vaccine dose. As an alternative to cell-culture based vaccine, virus-like particles (VLPs) are considered as a highpriority vaccine strategy against emerging viruses. VLPs represent highly ordered repetitive structures via macromolecular assemblies of viral proteins. The particulate nature allows efficient uptake into antigen presenting cells stimulating both innate and adaptive immune responses towards enhanced vaccine efficacy. Increasing research activity and translation opportunity necessitate the advances in the design of VLPs and new bioprocessing modalities for efficient and cost-effective production. Herein, we describe major achievements and challenges in this endeavor, with respect to designing strategies to harnessing the immunogenic potential, production platforms, downstream processes, and some exemplary cases in developing VLP-based vaccines.  相似文献   

19.
In attempts to determine the causal agents of blackcurrant reversion (BCRD) and gooseberry veinbanding (GVBD) diseases of Ribes species, details of the ultrastructure of different kinds of tissue from plants affected with these different diseases were studied. In three of 12 blackcurrant plants affected with BCRD, leaves and flowers of plants showing symptoms typical of the severe (R) form of the disease, contained rhabdovirus-like particles c. 65–80 nm × 215–485 nm. They were seen most often in the nucleus of cells as single particles but were also found in clusters or rafts. In leaves, these virus-like particles (VLPs) were present only in cells associated with the xylem parenchyma where they occurred as membrane-bound clusters within the nucleus. In flowers, they were also found in phloem parenchyma cells in the peripheral cytoplasm and very occasionally in the cytoplasm of epidermal cells. All non-nuclear VLPs were membrane-bound, either singly or in groups and the membrane seemed to be part of the endoplasmic reticulum. The proportion of vascular cells containing these VLPs was very low (< 1%). In a few cells, smaller bacilliform particles, c. 40–50 nm × 200–250 nm, were found in the nucleus together with the larger particles. Double-membrane bodies, detected in fig leaves affected with fig mosaic (the agent of which is also mite-transmitted), were not detected in any BCRD-affected plants. In leaf tissue of one of three gooseberry and one of two blackcurrant plants affected with GVBD, two kinds of VLPs were found. Rhabdovirus-like particles, similar to those in BCRD-affected material, were present in the nuclei, perinuclear space and cytoplasm of xylem parenchyma cells. They were c. 60–72 nm × 155–230 nm but there was no evidence of the smaller rhabdovirus-like particles detected in a few cells of BCRD-affected tissues. The second kind of VLP was found in noncrystalline masses, with a mean centre-centre spacing of c. 10 nm, in the cytoplasm of phloem cells. These particles, together with other ultrastructural changes, were typical of those reported for aphid-transmitted closteroviruses. No badnavirus-like particles, reported previously from GVBD-affected plants, were observed in any of the plants studied. The significance of these findings in relation to these two important diseases of commercial Ribes species is discussed.  相似文献   

20.
The development of various types of virus‐like particles (VLPs) has accelerated over the past two decades as the importance of VLPs for generating next‐generation vaccines has been appreciated. Yeast has advantages such as scalable fermentation, low risk of contamination by adventitious agents, low production costs and the ability to produce VLPs with reliable qualities. It is generally recognized that yeast is suitable for producing VLPs that have simple structures and are produced intracellularly. However, recently there has been much effort to extend its applicability, and there is now evidence that it can be used as an expression platform for the productions of VLPs not only of nonenveloped viruses but also of enveloped viruses. Moreover, evidences indicated that yeast allows secretory VLP productions. Meanwhile, it has become evident that the quality and quantity of yeast‐derived VLPs are influenced by the choice of plasmid and promoter, the ratio of the structural proteins produced. Here, we review the characteristics of the yeast expression system in terms of the production of VLP and compare it with other expression systems. We also consider strategies for VLP production in yeast and factors that need to be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号