首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Li L  Buchet R  Wu Y 《Analytical biochemistry》2008,381(1):123-128
To elucidate the inhibition mechanisms of hydroxyapatite (HA), a biological model mimicking the mineralization process was developed. The addition of 4% (v/v) dimethyl sulfoxide (DMSO) in synthetic cartilage lymph (SCL) medium containing 2 mM calcium and 3.42 mM inorganic phosphate (Pi) at pH 7.6 and 37 °C produced HA as matrix vesicles (MVs) under physiological conditions. Such a model has the advantage of monitoring the HA nucleation process without interfering with other processes at the cellular or enzymatic level. Turbidity measurements allowed us to follow the process of nucleation, whereas infrared spectra and X-ray diffraction permitted us to identify HA. Mineral formation induced by DMSO and by MVs in the SCL medium produced crystalline HA in a similar manner. The nucleation model served to evaluate the inhibition effects of ATP, GTP, UTP, ADP, ADP-ribose, AMP, and pyrophosphate (PPi). Here 10 μM PPi, 100 μM nucleotide triphosphates (ATP, GTP, UTP), and 1 mM ADP inhibited HA formation directly, whereas 1 mM ADP-ribose and 1 mM AMP did not. This confirmed that the PPi group is a potent inhibitor of HA formation. Increasing the PPi concentration from 100 μM to 1 mM induced calcium pyrophosphate dihydrate. We propose that DMSO-induced HA formation could serve to screen putative inhibitors of mineral formation.  相似文献   

2.
The effects of sinomenine (SIN, an alkaloid extracted from the Chinese medicinal plant Sinomenium acutum used for centuries to treat rheumatic disease, including rheumatoid arthritis) on apatitic nucleation and matrix vesicle (MV)-induced mineral formation were compared with those of cysteine, levamisole, and theophylline. We found that SIN was not an inhibitor of tissue non-specific alkaline phosphatase (TNAP), a marker of biological mineralization, but confirmed that cysteine, levamisole, and theophylline were. Further, none of these four molecules directly affected the nucleation of hydroxyapatite (HA) formation, in contrast to pyrophosphate (PPi) which did. Incubation of 0.25-1.0 mM cysteine, theophylline, or levamisole with MVs in synthetic cartilage lymph (SCL) containing AMP and Ca2+, but not inorganic phosphate (Pi), prolonged the induction time of mineral formation, apparently by inhibiting TNAP activity. SIN at the same levels neither inhibited TNAP activity nor affected the induction time of MV mineral formation. However, SIN did markedly delay MV-induced mineral formation in SCL containing Pi (instead of AMP) in a manner similar to theophylline, but to a lesser extent than levamisole. Cysteine did not delay, in fact it slightly accelerated MV-induced mineral formation in Pi-containing SCL. These findings suggest that levamisole, SIN and theophylline may directly affect Ca2+ and/or Pi accretion during mineral formation; however, TNAP was not directly involved. The possible roles of annexins and other ion transporters, such as proteins of the solute carrier family implicated in Ca2+ and Pi influx are discussed.  相似文献   

3.
Testosterone induces vasorelaxation through non-genomic mechanisms in several isolated blood vessels, but no study has reported its effects on the canine basilar artery, an important artery implicated in cerebral vasospasm. Hence, this study has investigated the mechanisms involved in testosterone-induced relaxation of the canine basilar artery. For this purpose, the vasorelaxant effects of testosterone were evaluated in KCl- and/or PGF-precontracted arterial rings in vitro in the absence or presence of several antagonists/inhibitors/blockers; the effect of testosterone on the contractile responses to CaCl2 was also determined. Testosterone (10-180 μM) produced concentration-dependent relaxations of KCl- or PGF-precontracted arterial rings which were: (i) unaffected by flutamide (10 μM), dl-aminoglutethimide (10 μM), actinomycin D (10 μM), cycloheximide (10 μM), SQ 22,536 (100 μM) or ODQ (30 μM); and (ii) significantly attenuated by the blockers 4-aminopyridine (KV; 1 mM), BaCl2 (KIR; 30 μM), iberiotoxin (BKCa2+; 20 nM), but not by glybenclamide (KATP; 10 μM). In addition, testosterone (31, 56 and 180 μM) and nifedipine (0.01-1 μM) produced a concentration-dependent blockade of the contraction to CaCl2 (10 μM to 10 mM) in arterial rings depolarized by 60 mM KCl. These results, taken together, show that testosterone relaxes the canine basilar artery mainly by blockade of voltage-dependent Ca2+ channels and, to a lesser extent, by activation of K+ channels (KIR, KV and BKCa2+). This effect does not involve genomic mechanisms, production of cAMP/cGMP or the conversion of testosterone to 17β-estradiol.  相似文献   

4.
Transient receptor potential channels (TRPs) regulate tumor growth via calcium-dependent mechanisms. The (thermosensitive) capsaicin receptor TRPV1 is overexpressed in numerous highly aggressive cancers. TRPV1 has potent antiproliferative activity and is therefore potentially applicable in targeted therapy of malignancies. Recently, we characterized TRPM8 functions in pancreatic neuroendocrine tumors (NETs), however, the role of TRPV1 is unknown. Here, we studied the expression and the role of TRPV1 in regulating intracellular Ca2+ and chromogranin A (CgA) secretion in pancreatic NET BON-1 cell line and in primary NET cells (prNET). TRPV1 expression was detected by RT-PCR, Western blot and immunofluorescence. Intracellular free Ca2+ ([Ca2+]i) was measured by fura-2; TRPV1 channel currents by the planar patch-clamp technique. Nonselective cation currents were analyzed by a color-coded plot method and CgA secretion by ELISA. Pancreatic BON-1 cells and NETs express TRPV1. Pharmacological blockade of TRPs by La3+ (100 μM) or by ruthenium-red (RuR) or by capsazepine (CPZ) (both at 10 μM) suppressed the capsaicin (CAP)- or heat-stimulated increase of [Ca2+]i in NET cells. CAP (20 μM) also increased nonselective cation channel currents in BON-1 cells. Furthermore, CAP (10 μM) stimulated CgA secretion, which was inhibited by CPZ or by RuR (both 10 μM). La3+ potently reduced both stimulated and the basal CgA secretion. Our study shows for the first time that TRPV1 is expressed in pancreatic NETs. Activation of TRPV1 translates into changes of intracellular Ca2+, a known mechanism triggering the secretion of CgA. The clinical relevance of TRPV1 activation in NETs requires further investigations.  相似文献   

5.
6.
The core complex of photosystem II (PSII) was purified from thermophillic cyanobaterium Thermosynechococcus elongatus grown in Sr2+-containing and Ca2+-free medium. Functional in vivo incorporation of Sr2+ into the oxygen-evolving complex (OEC) was confirmed by EPR analysis of the isolated and highly purified SrPSII complex in agreement with the previous study of Boussac et al. [J. Biol. Chem. 279 (2004) 22809-22819]. Three-dimensional crystals of SrPSII complex were obtained which diffracted to 3.9 Å and belonged to the orthorhombic space group P212121 with unit cell dimensions of a = 133.6 Å, b = 236.6 Å, c = 307.8 Å. Anomalous diffraction data collected at the Sr K-X-ray absorption edge identified a novel Sr2+-binding site which, within the resolution of these data (6.5 Å), is consistent with the positioning of Ca2+ in the recent crystallographic models of PSII [Ferreira et al. Science 303 (2004) 1831-1838, Loll et al. Nature 438 (2005) 1040-1044]. Fluorescence measurements on SrPSII crystals confirmed that crystallized SrPSII was active in transferring electrons from the OEC to the acceptor site of the reaction centre. However, SrPSII showed altered functional properties of its modified OEC in comparison with that of the CaPSII counterpart: slowdown of the QA-to-QB electron transfer and stabilized S2QA charge recombination.  相似文献   

7.
Mg2+ and Zn2+ are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca2+-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg2+ and Zn2+ on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX. Pure HAP and PS-CPLX proved to be powerful nucleators, but ACP took much longer to induce mineral formation. In SCL, Mg2+ and Zn2+ had significantly different inhibitory effects on the onset and amount of mineral formation; HAP and PS-CPLX were less affected than ACP. Mg2+ and Zn2+ caused similar reductions in the rate and length of rapid mineral formation, but Zn2+ was a more potent inhibitor on a molar basis. When incorporated into PS-CPLX, Mg2+ and Zn2+ caused significantly different effects than when present in SCL. Even low, subphysiological levels of Mg2+ altered the inherent structure of PS-CPLX and markedly reduced its ability to induce and propagate mineral formation. Incorporated Zn2+ caused significantly less effect, low (<20 μM) levels causing almost no inhibition. Levels of Zn2+ present in MVs do not appear to inhibit their nucleational activity.  相似文献   

8.
The role of phosphorus (P) status in root-zone CO2 utilisation for organic acid synthesis during Al3+ toxicity was assessed. Root-zone CO2 can be incorporated into organic acids via Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31). P-deficiency and Al3+ toxicity can induce organic acid synthesis, but it is unknown how P status affects the utilisation of PEPC-derived organic acids during Al3+ toxicity. Two-week-old Solanum lycopersicum seedlings were transferred to hydroponic culture for 3 weeks. The hydroponic culture consisted of a standard Long Ashton nutrient solution containing either 0.1 μM or 1 mM P. Short-term Al3+ toxicity was induced by a 60-min exposure to a pH-buffered solution (pH 4.5) containing 2 mM CaSO4 and 50 μM AlCl3. Al3+ toxicity induced a decline in root respiration, adenylate concentrations and an increase in root-zone CO2 utilisation for both P sufficient and P-deficient plants. However during Al3+ toxicity, P deficiency enhanced the incorporation and metabolism of root-zone CO2 via PEPC. Moreover, P deficiency led to a greater proportion of the PEPC-derived organic acids to be exuded during Al3+ toxicity. These results indicate that P-status can influence the response to Al3+ by inducing a greater utilisation of PEPC-derived organic acids for Al3+ detoxification.  相似文献   

9.
The Zn-proteinase, isolated from Saccharomonosporacanescens (NPS), shares many common features with thermolysin, but considerable differences are also evident, as far as the substrate recognition site is concerned. In substrates of general structure AcylAlaAlaPhe 4NA, this neutral proteinase cleaves only the arylamide bond (non-typical activity of Zn-proteinases), while thermolysin attacks the peptide bond Ala-Phe. Phosphoramidon is a powerful tight binding inhibitor for thermolysin and significantly less specific towards NPS. The Ki-values (65 μM for NPS vs 0.034 μM for thermolysin) differ nearly 2000-folds. This implies significant differences in the specificity of the corresponding subsites. The carbohydrate moiety is supposed to accommodate in the S1-subsite and the series of arabinopyranosides and glucopyranosides (12 compounds), which are assayed as inhibitors in a model system: NPS with SucAlaAlaPhe4NA as a substrate could be considered as mapping the S1-subsite of NPS. Members of the series with an additional ring (3,4-epithio, 3,4-anhydro-derivatives) turned out to be reasonably good competitive inhibitors (Ki ≈ 0.1-0.2 mM are of the same order as the Ki value for phosphoramidon). The structure of these compounds (8, 9, 11 and 12) seems to fit the size of the S1-subsite and due to an appropriately oriented OH-group in addition, to protect the active site Zn2+.  相似文献   

10.
Electronic structures of chalcogenide-bridged binuclear clusters of vanadium and niobium with the {M2(μ-Q2)2}4+, {M2(μ-Q)2}4+ and {M2(μ-Q)(μ-Q)2}4+ cores (Q = S, Se, Te) have been studied by density functional theory methods. In the vanadium clusters, the V-V distances are calculated to be in the range of 2.766-3.193 ?, whereas in the niobium clusters the calculated Nb-Nb bond lengths fall in the range of 2.881-3.380 ?, in accordance with the experimentally determined values. The calculated M-M bond distances generally decrease in the order {M2(μ-Q2)2}4+ > {M2(μ-Q)2}4+ > {M2(μ-Q)(μ-Q)2}4+ (M = V, Nb, Q = S, Se). The calculated enthalpies of formation for the V clusters are higher than for the corresponding Nb clusters. On the other hand, the M2Q2 clusters have always higher enthalpies of formation than the M2Q3 species, and also (with the exception of M = V, Q = S) higher values of enthalpy of formation than for the M2Q4 species. The hardness η of the niobium clusters are higher than that of the vanadium analogs, except for the [V2S2(SH2)8]4+ case. The enthalpies ΔH298 and the free energies ΔG298 for the reactions of hydrogen addition to the [V2(μ-S2)2(H2O)8]4+ and the [Nb2(μ-S2)2(H2O)8]4+ clusters at constant pressure are −121.75 and −59.73 kJ/mol for the vanadium cluster, and 13.97 and 75.15 kJ/mol for the niobium cluster.  相似文献   

11.
In the presence of the uncoupler, external zinc ions inhibit rapidly turnover of cytochrome c oxidase reconstituted in phospholipid vesicles or bound to the membrane of intact mitochondria. The effect is promoted by electron leaks into the oxidase during preincubation with Zn2+. Inhibition of liposome-bound bovine cytochrome oxidase by external Zn2+ titrates with a Ki of 1 ± 0.3 μM. Presumably, the Zn2+-binding group at the positively charged side is not reactive in the oxidized enzyme, but becomes accessible to the cation in some partially reduced state(s) of the oxidase; reduction of CuB is tentatively proposed to be responsible for the effect.  相似文献   

12.
Leung KW  Leung FP  Huang Y  Mak NK  Wong RN 《FEBS letters》2007,581(13):2423-2428
We demonstrated that ginsenoside-Re (Re), a pharmacological active component of ginseng, is a functional ligand of glucocorticoid receptor (GR) using competitive ligand-binding assay (IC50 = 156.6 nM; Kd = 49.7 nM) and reporter gene assay. Treatment with Re (1 μM) raises intracellular Ca2+ ([Ca2+]i) and nitric oxide (NO) levels in human umbilical vein endothelial cells as measured using fura-2 and 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, respectively. Western blot analysis shows that Re increased phosphorylation of endothelial nitric oxide synthase. These effects were abolished by GR antagonist RU486, siRNA targeting GR, non-selective cation channel blocker 2-aminoethyldiphenylborate, or in the absence of extracellular Ca2+, indicating Re is indeed an agonistic ligand for the GR and the activated GR induces rapid Ca2+ influx and NO production in endothelial cells.  相似文献   

13.

Aims

The aim of this study is to investigate the vasorelaxant effect of 16-O-acetyldihydroisosteviol (ADIS) and its underlying mechanisms in isolated rat aorta.

Main methods

Rat aortic rings were isolated, suspended in organ baths containing Kreb's solution, maintained at 37 °C, and mounted on tungsten wire and continuously bubbled with a mixture of 95% O2 and 5% CO2 under a resting tension of 1 g. The vasorelaxant effects of ADIS were investigated by means of isometric tension recording experiment.

Key findings

ADIS (0.1 μM–3 mM) induced relaxation of aortic rings pre-contracted by phenylephrine (PE, 10 μM) and KCl (80 mM) with intact-endothelium (Emax = 79.26 ± 3.74 and 79.88 ± 3.79, respectively) or denuded-endothelium (Emax = 88.05 ± 3.69 and 78.22 ± 6.86, respectively). In depolarization Ca2+-free solution, ADIS inhibits calcium chloride (CaCl2)-induced contraction in endothelium-denuded rings in a concentration-dependent manner. In addition, ADIS attenuates transient contractions in Ca2+-free medium containing EGTA (1 mM) induced by PE (10 μM) and caffeine (20 mM). By contrast, relaxation was not affected by tetraethylammonium (TEA, 5 mM), 4-aminopyridine (4-AP, 1 mM), glibenclamide (10 μM), barium chloride (BaCl2, 1 mM), and 1H-[1,2,3]oxadiazolo[4,3-α]quinoxalin-1-one (ODQ, 1 μM).

Significance

These findings reveal the vasorelaxant effect of ADIS, through endothelium-independent pathway. It acts as a Ca2 + channel blocker through both intracellular and extracellular Ca2 + release.  相似文献   

14.
15.
Saccharomyces cerevisiae Atm1p has been cloned, over-expressed and purified from a yeast expression system. The sequence includes both the soluble ATPase and transmembrane-spanning domains. With the introduction of an N-terminal Kozak sequence and a C-terminal (His)6-tag, a yield of 1 mg of Atm1p was obtained from 3 g wet yeast cells, which is comparable to other membrane-associated proteins isolated from eukaryotic expression systems. The ATPase activity of Atm1p is sensitive to sodium vanadate, a P-type ATPase inhibitor, with an IC50 of 4 μM. MgADP is a product inhibitor for Atm1p with an IC50 of 0.9 mM. The Michaelis–Menten constants Vmax, KM and kcat of Atm1p were measured as 8.7 ± 0.3 μM/min, 107 ± 16 μM and 1.24 ± 0.06 min− 1, respectively. A plot of ATPase activity versus concentration of Atm1p exhibits a nonlinear relationship, suggesting an allosteric response and an important role for the transmembrane domain in mediating both ATP hydrolysis and MgADP release. The metal dependence of Atm1p ATPase activity demonstrated a reactivity order of Mg2+ > Mn2+ > Co2+, while each divalent ion was found to be inhibitory at higher concentrations. The activation and inhibitory effect of phospholipids suggest that formation of a lipid–micelle complex is important for enzymatic activity and stability. Structural analysis of Atm1p by CD spectroscopy suggested a similarity of secondary structure to that found for other members of this ABC protein family.  相似文献   

16.
Phytate, the major source of phosphorus in seeds, exists as a complex with different metal ions. Alkaline phytases are known to dephosphorylate phytate complexed with calcium ions in contrast to acid phytases that act only on phytic acid. A recombinant alkaline phytase from Bacillus sp. MD2 has been purified and characterized with respect to the effect of divalent metal ions on the enzyme activity and stability. The presence of Ca2+ on both the enzyme and the substrate is required for optimal activity and stability. Replacing Ca2+ with Ba2+, Mn2+, Mg2+ and Sr2+ in the phytase resulted in the expression of > 90% of the maximal activity with calcium-phytate as the substrate, while Fe2+ and Zn2+ rendered the enzyme inactive. On the other hand, the calcium loaded phytase showed significant activity (60%) with sodium phytate and lower activity (17-20%) with phytate complexed with only Mg2+, Sn2+ and Sr2+, respectively. On replacing Ca2+ on both the enzyme and the substrate with other metal ions, about 20% of the maximal phytase activity was obtained only with Mg2+ and Sr2+, respectively. Only Ca2+ resulted in a marked increase in the melting temperature (Tm) of the enzyme by 12-21 °C, while Ba2+, Mn2+, Sr2+ or Cu2+ resulted in a modest (2-3.5 °C) increase in Tm. In the presence of 1-5 mM Ca2+, the optimum temperature of the phytase activity was increased from 40 °C to 70 °C, while optimum pH of the enzyme shifted by 0.4-1 pH unit towards the acidic region.  相似文献   

17.
A cDNA clone (GenBank Accession No. AY835398) encoding a sesquiterpene synthase, (E)-β-farnesene synthase, has been isolated from Artemisia annua L. It contains a 1746-bp open reading frame coding for 574 amino acids (66.9 kDa) with a calculated pI = 5.03. The deduced amino acid sequence is 30-50% identical with sequences of other sesquiterpene synthases from angiosperms. The recombinant enzyme, produced in Escherichia coli, catalyzed the formation of a single product, β-farnesene, from farnesyl diphosphate. The pH optimum for the recombinant enzyme is around 6.5 and the Km- and kcat-values for farnesyl diphosphate, is 2.1 μM and 9.5 × 10−3 s−1, respectively resulting in the efficiency 4.5 × 10−3 M−1 s−1. The enzyme exhibits substantial activity in the presence of Mg2+, Mn2+ or Co2+ but essentially no activity when Zn2+, Ni2+ or Cu2+ is used as cofactor. The concentration required for maximum activity are estimated to 5 mM, 0.5 mM and <10 μM for Mg2+, Co2+ or Mn2+, respectively. Geranyl diphosphate is not a substrate for the recombinant enzyme.  相似文献   

18.
Electrochromic styryl dyes were used to investigate mutually antagonistic effects of Ca2+ and H+ on binding of the other ion in the E1 and P-E2 states of the SR Ca-ATPase. On the cytoplasmic side of the protein in the absence of Mg2+ a strictly competitive binding sequence, H2E1?HE1?E1?CaE1?Ca2E1, was found with two Ca2+ ions bound cooperatively. The apparent equilibrium dissociation constants were in the order of K1/2(2 Ca) = 34 nM, K1/2(H) = 1 nM and K1/2(H2) = 1.32 μM. Up to 2 Mg2+ ions were also able to enter the binding sites electrogenically and to compete with the transported substrate ions (K1/2(Mg) = 165 μM, K1/2(Mg2) = 7.4 mM). In the P-E2 state, with binding sites facing the lumen of the sarcoplasmatic reticulum, the measured concentration dependence of Ca2+ and H+ binding could be described satisfactorily only with a branched reaction scheme in which a mixed state, P-E2CaH, exists. From numerical simulations, equilibrium dissociation constants could be determined for Ca2+ (0.4 mM and 25 mM) and H+ (2 μM and 10 μM). These simulations reproduced all observed antagonistic concentration dependences. The comparison of the dielectric ion binding in the E1 and P-E2 conformations indicates that the transition between both conformations is accompanied by a shift of their (dielectric) position.  相似文献   

19.
Human lens proteins (HLP) become chemically modified by kynurenines and advanced glycation end products (AGEs) during aging and cataractogenesis. We investigated the effects of kynurenines on AGE synthesis in HLP. We found that incubation with 5 mM ribose or 5 mM ascorbate produced significant quantities of pentosidine, and this was further enhanced in the presence of two different kynurenines (200–500 µM): N-formylkynurenine (Nfk) and kynurenine (Kyn). Another related compound, 3-hydroxykynurenine (3OH-Kyn), had disparate effects; low concentrations (10–200 µM) promoted pentosidine synthesis, but high concentrations (200–500 µM) inhibited it. 3OH-Kyn showed similar effects on pentosidine synthesis from Amadori-enriched HLP or ribated lysine. Chelex-100 treatment of phosphate buffer reduced pentosidine synthesis from Amadori-enriched HLP by ∼ 90%, but it did not inhibit the stimulating effect of 3OH-Kyn and EDTA. 3OH-Kyn (100–500 μM) spontaneously produced copious amounts of H2O2 (10–25 μM), but externally added H2O2 had only a mild stimulating effect on pentosidine but had no effect on Nε-carboxymethyl lysine (CML) synthesis in HLP from ribose and ascorbate. Further, human lens epithelial cells incubated with ribose and 3OH-Kyn showed higher intracellular pentosidine than cells incubated with ribose alone. CML synthesis from glycating agents was inhibited 30 to 50% by 3OH-Kyn at concentrations of 100–500 μM. Argpyrimidine synthesis from 5 mM methylglyoxal was slightly inhibited by all kynurenines at concentrations of 100–500 μM. These results suggest that AGE synthesis in HLP is modulated by kynurenines, and such effects indicate a mode of interplay between kynurenines and carbohydrates important for AGE formation during lens aging and cataract formation.  相似文献   

20.
Although many synthetic calcium indicators are available, a search for compounds with improved characteristics continues. Here, we describe the synthesis and properties of Asante Calcium Red-1 (ACR-1) and its low affinity derivative (ACR-1-LA) created by linking BAPTA to seminaphthofluorescein. The indicators combine a visible light (450–540 nm) excitation with deep-red fluorescence (640 nm). Upon Ca2+ binding, the indicators raise their fluorescence with longer excitation wavelengths producing higher responses. Although the changes occur without any spectral shifts, it is possible to ratio Ca2+-dependent (640 nm) and quasi-independent (530 nm) emission when using visible (<490 nm) or multiphoton (∼780 nm) excitation. Therefore, both probes can be used as single wavelength or, less dynamic, ratiometric indicators. Long indicator emission might allow easy [Ca2+]i measurement in GFP expressing cells. The indicators bind Ca2+ with either high (Kd = 0.49 ± 0.07 μM; ACR-1) or low affinity (Kd = 6.65 ± 0.13 μM; ACR-1-LA). Chelating Zn2+ (Kd = 0.38 ± 0.02 nM) or Mg2+ (Kd ∼ 5 mM) slightly raises and binding Co2+ quenches dye fluorescence. New indicators are somewhat pH-sensitive (pKa = 6.31 ± 0.07), but fairly resistant to bleaching. The probes are rather dim, which combined with low AM ester loading efficiency, might complicate in situ imaging. Despite potential drawbacks, ACR-1 and ACR-1-LA are promising new calcium indicators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号