首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin peptide B:9-23 is a major autoantigen in type 1 diabetes. Combined treatment with B:9-23 peptide and polyinosinic-polycytidylic acid (poly I:C), but neither alone, induce insulitis in normal BALB/c mice. In contrast, the combined treatment accelerated insulitis, but prevented diabetes in NOD mice. Our immunofluorescence study with anti-CD4/anti-Foxp3 revealed that the proportion of Foxp3 positive CD4+CD25+ regulatory T cells (Tregs) was elevated in the islets of NOD mice treated with B:9-23 peptide and poly I:C, as compared to non-treated mice. Depletion of Tregs by anti-CD25 antibody hastened spontaneous development of diabetes in non-treated NOD mice, and abolished the protective effect of the combined treatment and conversely accelerated the onset of diabetes in the treated mice. These results indicate that poly I:C combined with B:9-23 peptide promotes infiltration of both pathogenic T cells and predominantly Tregs into the islets, thereby inhibiting progression from insulitis to overt diabetes in NOD mice.  相似文献   

2.
Insulin peptide B:9-23 is a major autoantigen in type 1 diabetes that contains two distinct CD4 epitopes (B:9-16 and B:13-23). One of the two epitopes, B:13-23, overlaps with a CTL epitope (B:15-23). In this study, we report that the elimination of the CTL epitope from the B:9-23 peptide by amino acid substitution (with alanine) at positions B:16 and 19 (A16,19 altered peptide ligand) or truncation of the C-terminal amino acids from the peptide (B:9-21), neither of which stimulated the proliferation of insulin B:15-23 reactive CD8 T cells, provided significant intranasally induced suppression of diabetes when coadministered with a potent mucosal adjuvant cholera toxin (CT). Intranasal treatment with A16,19 resulted in the elimination of spontaneous insulin autoantibodies, significant inhibition of insulitis and remission from hyperglycemia, and prevented the progression to diabetes. Intranasal administration of native B:9-23/CT or B:11-23/CT resulted in a significant enhancement of insulin autoantibody expression and severity of insulitis and failed to prevent diabetes. Our present study indicates that elimination of the CTL epitope from the B:9-23 peptide was critically important for mucosally induced diabetes prevention. The A16,19 altered peptide ligand, but not other native insulin peptides, suppresses insulin autoantibodies associated with protection from and remission of diabetes.  相似文献   

3.
Coinhibitory PD-1/PD-L1 (B7-H1) interactions provide critical signals for the regulation of autoreactive T-cell responses. We established mouse models, expressing the costimulator molecule B7.1 (CD80) on pancreatic beta cells (RIP-B7.1 tg mice) or are deficient in coinhibitory PD-L1 or PD-1 molecules (PD-L1−/− and PD-1−/− mice), to study induction of preproinsulin (ppins)-specific CD8 T-cell responses and experimental autoimmune diabetes (EAD) by DNA-based immunization. RIP-B7.1 tg mice allowed us to identify two CD8 T-cell specificities: pCI/ppins DNA exclusively induced Kb/A12–21-specific CD8 T-cells and EAD, whereas pCI/ppinsΔA12–21 DNA (encoding ppins without the COOH-terminal A12–21 epitope) elicited Kb/B22–29-specific CD8 T-cells and EAD. Specific expression/processing of mutant ppinsΔA12–21 (but not ppins) in non-beta cells, targeted by intramuscular DNA-injection, thus facilitated induction of Kb/B22–29-specific CD8 T-cells. The A12–21 epitope binds Kb molecules with a very low avidity as compared with B22–29. Interestingly, immunization of coinhibition-deficient PD-L1−/− or PD-1−/− mice with pCI/ppins induced Kb/A12–21-monospecific CD8 T-cells and EAD but injections with pCI/ppinsΔA12–21 did neither recruit Kb/B22–29-specific CD8 T-cells into the pancreatic target tissue nor induce EAD. PpinsΔA12–21/(Kb/B22–29)-mediated EAD was efficiently restored in RIP-B7.1+/PD-L1−/− mice, differing from PD-L1−/− mice only in the tg B7.1 expression in beta cells. Alternatively, an ongoing beta cell destruction and tissue inflammation, initiated by ppins/(Kb/A12–21)-specific CD8 T-cells in pCI/ppins+pCI/ppinsΔA12–21 co-immunized PD-L1−/− mice, facilitated the expansion of ppinsΔA12–21/(Kb/B22–29)-specific CD8 T-cells. CD8 T-cells specific for the high-affinity Kb/B22–29- (but not the low-affinity Kb/A12–21)-epitope thus require stimulatory ´help from beta cells or inflamed islets to expand in PD-L1-deficient mice. The new PD-1/PD-L1 diabetes models may be valuable tools to study under well controlled experimental conditions distinct hierarchies of autoreactive CD8 T-cell responses, which trigger the initial steps of beta cell destruction or emerge during the pathogenic progression of EAD.  相似文献   

4.
Polyclonal preparations of therapeutic immunoglobulins, namely intravenous immunoglobulins (IVIg), are essential in the treatment of immunodeficiency and are increasingly used for the treatment of autoimmune and inflammatory diseases. Currently, patients’ accessibility to IVIg depends exclusively upon volunteer blood donations followed by the fractionation of pooled human plasma obtained from thousands of individuals. Presently, there are no in vitro cell culture procedures allowing the preparation of polyclonal human antibodies. All in vitro human therapeutic antibodies that are currently generated are based on monoclonal antibodies, which are mostly issued from genetic engineering or single cell antibody technologies. Here, we describe an in vitro cell culture system, using CD40-CD154 interactions, that leads to a 1×106-fold expansion of switched memory B lymphocytes in approximately 50 days. These expanded cells secrete polyclonal IgG, which distribution into IgG1, IgG2, IgG3 and IgG4 is similar to that of normal human serum. Such in vitro generated IgG showed relatively low self-reactivity since they interacted moderately with only 24 human antigens among a total of 9484 targets. Furthermore, up to one liter of IgG secreting cells can be produced in about 40 days. This experimental model, providing large-scale expansion of human B lymphocytes, represents a critical step toward the in vitro production of polyclonal human IgG and a new method for the ex vivo expansion of B cells for therapeutic purposes.  相似文献   

5.
Class II major histocompatibility molecules are the primary susceptibility locus for many autoimmune disorders, including type 1 diabetes. Human DQ8 and I-A(g7), in the NOD mouse model of spontaneous autoimmune diabetes, confers diabetes risk by modulating presentation of specific islet peptides in the thymus and periphery. We used an in silico molecular docking program to screen a large "druglike" chemical library to define small molecules capable of occupying specific structural pockets along the I-A(g7) binding groove, with the objective of influencing presentation to T cells of the autoantigen insulin B chain peptide consisting of amino acids 9-23. In this study we show, using both murine and human cells, that small molecules can enhance or inhibit specific TCR signaling in the presence of cognate target peptides, based upon the structural pocket targeted. The influence of compounds on the TCR response was pocket dependent, with pocket 1 and 6 compounds inhibiting responses and molecules directed at pocket 9 enhancing responses to peptide. At nanomolar concentrations, the inhibitory molecules block the insulin B chain peptide consisting of amino acids 9-23, endogenous insulin, and islet-stimulated T cell responses. Glyphosine, a pocket 9 compound, enhances insulin peptide presentation to T cells at concentrations as low as 10 nM, upregulates IL-10 secretion, and prevents diabetes in NOD mice. These studies present a novel method for identifying small molecules capable of both stimulating and inhibiting T cell responses, with potentially therapeutic applications.  相似文献   

6.
Non-obese diabetic (NOD) mice are well-established models of independently developing spontaneous autoimmune diseases, Sjögren’s syndrome (SS) and type 1 diabetes (T1D). The key determining factor for T1D is the strong association with particular MHCII molecule and recognition by diabetogenic T cell receptor (TCR) of an insulin peptide presented in the context of I-Ag7 molecule. For SS the association with MHCII polymorphism is weaker and TCR diversity involved in the onset of the autoimmune phase of SS remains poorly understood. To compare the impact of TCR diversity reduction on the development of both diseases we generated two lines of TCR transgenic NOD mice. One line expresses transgenic TCRβ chain originated from a pathogenically irrelevant TCR, and the second line additionally expresses transgenic TCRαmini locus. Analysis of TCR sequences on NOD background reveals lower TCR diversity on Treg cells not only in the thymus, but also in the periphery. This reduction in diversity does not affect conventional CD4+ T cells, as compared to the TCRmini repertoire on B6 background. Interestingly, neither transgenic TCRβ nor TCRmini mice develop diabetes, which we show is due to lack of insulin B:9–23 specific T cells in the periphery. Conversely SS develops in both lines, with full glandular infiltration, production of autoantibodies and hyposalivation. It shows that SS development is not as sensitive to limited availability of TCR specificities as T1D, which suggests wider range of possible TCR/peptide/MHC interactions driving autoimmunity in SS.  相似文献   

7.
The signaling lymphocyte activation molecule (SLAM) family plays important roles in adaptive immune responses. Herein, we evaluated whether the SLAM family member 2B4 (CD244) plays a role in immune cell development, homeostasis and antibody responses. We found that the splenic cellularity in Cd244 -/- mice was significantly reduced due to a reduction in both CD4 T cells and follicular (Fo) B cells; whereas, the number of peritoneal cavity B cells was increased. These findings led us to examine whether 2B4 modulates B cell immune responses. When we examined T-dependent B cell responses, while there was no difference in the kinetics or magnitude of the antigen-specific IgM and IgG1 antibody response there was a reduction in bone marrow (BM) memory, but not plasma cells in Cd244 -/- mice. When we evaluated T-independent immune responses, we found that antigen-specific IgM and IgG3 were elevated in the serum following immunization. These data indicate that 2B4 dampens T-independent B cell responses due to a reduction in peritoneal cavity B cells, but has minimal impact on T-dependent B cell responses.  相似文献   

8.
We have produced a series of hybrid IgG1-IgG2a mouse immunoglobulins with identical light chains (L) and variable regions to facilitate the identification of structural features associated with functional differnces between immunoglobulin isotypes. Hybrid heavy chain (H) constant region gene segments were generated by genetic recombination in Escherichia coli between plasmids carrying mouse γ1 and γ2a gene segments. Crossovers occured through out these segments although the frequency was highest in regions of high nucleotide sequence homology. Eleven variant immunoglobulins produced by transfected hybridoma cell lines are assembled into H2L2 tetramers and properly glycosylated. In addition, all 11 immunoglbulins have identical antigen combining sites specific for the fluorescent hapten ε-dansyll-L-lysine. Protein A binding was used as probe of the structural integrity of the Fc portion of the variant antibodies. Differeneces in protein A binding between IgG1 and IgG2a appear to be due to amino acid differances at postions 252 (Thr→Met) and 254 (Thr→Ser) of the heavy chain (EU numbering).  相似文献   

9.
BackgroundAquaporin 4 (AQP4) is considered a putative autoantigen in patients with Neuromyelitis optica (NMO), an autoinflammatory disorder of the central nervous system (CNS). HLA haplotype analyses of patients with NMO suggest a positive association with HLA-DRB1* 03:01. We previously showed that the human (h) AQP4 peptide 281–300 is the dominant immunogenic determinant of hAQP4 in the context of HLA-DRB1*03:01. This immunogenic peptide stimulates a strong Th1 and Th17 immune response. AQP4281-300-specific encephalitogenic CD4+ T cells should initiate CNS inflammation that results in a clinical phenotype in HLA-DRB1*03:01 transgenic mice.MethodsControlled study with humanized experimental animals. HLA-DRB1*03:01 transgenic mice were immunized with hAQP4281-300, or whole-length hAQP4 protein emulsified in complete Freund’s adjuvant. Humoral immune responses to both antigens were assessed longitudinally. In vivo T cell frequencies were assessed by tetramer staining. Mice were followed clinically, and the anterior visual pathway was tested by pupillometry. CNS tissue was examined histologically post-mortem. Flow cytometry was utilized for MHC binding assays and to immunophenotype T cells, and T cell frequencies were determined by ELISpot assay.ResultsImmunization with hAQP4281-300 resulted in an in vivo expansion of antigen-specific CD4+ T cells, and an immunoglobulin isotype switch. HLA-DRB1*03:01 TG mice actively immunized with hAQP4281-300, or with whole-length hAQP4 protein were resistant to developing a neurological disease that resembles NMO. Experimental mice show no histological evidence of CNS inflammation, nor change in pupillary responses. Subsequent analysis reveals that a single amino acid substitution from aspartic acid in hAQP4 to glutamic acid in murine (m)AQP4 at position 290 prevents the recognition of hAQP4281-300 by the murine T cell receptor (TCR).ConclusionInduction of a CNS inflammatory autoimmune disorder by active immunization of HLA-DRB1*03:01 TG mice with human hAQP4281-300 will be complex due to a single amino acid substitution. The pathogenic role of T cells in this disorder remains critical despite these observations.  相似文献   

10.
We described in this paper the characteristics of a syngeneic anti-idiotypic serum made in BALB/c against BALB/c anti-poly (Glu60 Ala30 Tyr10) (GAT) antibodies. This serum recognizes idiotypic determinants present in all anti-GAT sera whatever the allotypic markers of the mice used to prepare the sera. The functional effect of this serum on two helper cell lines is also described. Cell line BDF1/52 was obtained from GAT immunized lymph node cells (LNC). Cell line BDF1/E3 was selected from splenic T-cells educated in vitro on GAT-pulsed adherent cells. Both lines were propagated in presence of filler cells, antigen, and medium containing T-cell growth factor(s) from splenic cells activated with concanavalin A. Both cell lines exhibit a helper activity as measured by the plaque-forming cell (PFC) response they induce in vitro in the presence of DNP-GAT and DNP sensitized B cells. Their helper activity is specific and they require a hapten-carrier bridge to activate B cells. These lines are able to induce IgG1, IgG2a and IgG2b anti-TNP PFC. Syngeneic anti-idiotypic serum B 658 inhibits specifically the function of these two lines but does not affect the helper activity of an OVA-specific T-cell line. The blocking activity of the serum can be adsorbed on a hybridoma protein with anti-GAT activity. This inhibition affects more dramatically the IgG1 response than the IgG2a and IgG2b responses.  相似文献   

11.
The effects of IgG1 and IgG2 anti-carrier antibodies were studied on cellular and humoral reactions induced by immunization with a hapten-carrier complex. IgG1 was shown to depress both delayed hypersensitivity reactions (DHR) to the carrier and anaphylaxis to the hapten whereas IgG2 had no activity. A mixture of IgG1 and IgG2 depressed only DHR to the carrier. The modulating effects of passive anti-carrier antibodies were shown to depend on their immunoglobulin class and the concentration used.  相似文献   

12.
Progression of spontaneous autoimmune diabetes is associated with development of a disease-countering negative-feedback regulatory loop that involves differentiation of low-avidity autoreactive CD8(+) cells into memory-like autoregulatory T cells. Such T cells blunt diabetes progression by suppressing the presentation of both cognate and noncognate Ags to pathogenic high-avidity autoreactive CD8(+) T cells in the pancreas-draining lymph nodes. In this study, we show that development of autoregulatory CD8(+) T cell memory is CD4(+) T cell dependent. Transgenic (TG) NOD mice expressing a low-affinity autoreactive TCR were completely resistant to autoimmune diabetes, even after systemic treatment of the mice with agonistic anti-CD40 or anti-4-1BB mAbs or autoantigen-pulsed dendritic cells, strategies that dramatically accelerate diabetes development in TG NOD mice expressing a higher affinity TCR for the same autoantigenic specificity. Furthermore, whereas abrogation of RAG-2 expression, hence endogenous CD4(+) T cell and B cell development, decelerated disease progression in high-affinity TCR-TG NOD mice, it converted the low-affinity TCR into a pathogenic one. In agreement with these data, polyclonal CD4(+) T cells from prediabetic NOD mice promoted disease in high-affinity TCR-TG NOD.Rag2(-/-) mice, but inhibited it in low-affinity TCR-TG NOD.Rag2(-/-) mice. Thus, in chronic autoimmune responses, CD4(+) Th cells contribute to both promoting and suppressing pathogenic autoimmunity.  相似文献   

13.
Some autoimmune sera containing anticentromere autoantibodies also recognize a doublet of Mr 23 000 (p23) and 25 000 (p25) in addition to CENP (centromere protein)-A (Mr 19 000), -B (Mr 80 000), and -C (Mr 140 000). A p25 antigen (HP1Hsα) has been shown to be a human homolog of Drosophila HP1 (heterochromatin protein 1). We have isolated a cDNA clone encoding another form of p25 (HP1Hsβor p25β) from a λZap HepG2 library using human autoimmune serum. The deduced amino acid sequence of the clone contained a conserved chromodomain (chromatin modifier domain) in the N-terminal region and a heterochromatin binding domain in the C-terminal region. In immunofluorescence experiments, only affinity purified antibodies reactive with the C-terminal (amino acids 70–185) domain showed nucleoplasmic and heterochromatin staining, whereas N-terminal (amino acids 1–115) specific antibodies were nonreactive. In metaphase chromosome spreads, the C-terminal domain antibody was also localized to the centromeric regions of chromosomes. Association with centromeres was most prominent at anaphase and changed to a more generalized association with whole chromosomes in telophase. The cooccurrence of autoantibodies to centromere proteins and HP1 in certain autoimmune diseases might be a reflection of coordinated immune responses to these closely associated sets of proteins. Received: 8 August 1996; in revised form: 4 December 1996 / Accepted: 17 December 1996  相似文献   

14.
In order to develop an anti-FMDV Asia1 type monoclonal antibody (mAb), BABL/c mice were immunized with recombinant FMDV VP1 protein. Three mAbs, 1B8, 5E1 and 5E2, were then further optimized. The result indicated that prepared anti-FMDV Asia1 mAbs had no cross-reactivity with Swine vesicular disease (SVD) and FMDV O, A and C type antigen. Their titers in abdomen liquor were 1:5×106, 1:2×106 and 1:5×106, respectively. 1B8 was found to be of IgG1 subtype, 5E1 and 5E2 belonged to IgG2b subtype. In this study, the prepared mAbs are specific for detecting FMDV type Asia1, and is potentially useful for pen-side diagnosis. Foudation items: The National high Technology Research and Development Program of China (No.2006AA10A204); The National science & Technology Pillar Program (No. 2006BAD06A17)  相似文献   

15.
CATs,a family of three distinct mammalian cationic amino acid transporters   总被引:2,自引:0,他引:2  
E. I. Closs 《Amino acids》1996,11(2):193-208
Summary Three related mammalian carrier proteins that mediate the transport of cationic amino acids through the plasma membrane have been identified in murine and human cells (CAT for cationic amino acid transporter). Models of the CAT proteins in the membrane suggest they have 12 or 14 transmembrane domains connected by short hydrophilic loops and intracellular N- and C-termini. The transport activity of the CAT proteins is sensitive to trans-stimulation and independent of the presence of sodium ions. These features agree with the behaviour of carrier proteins mediating facilitated diffusion. The three CAT proteins, CAT-1, CAT-2A and CAT-2(B) are encoded by two different genes (CAT-1 and CAT-2). CAT-1 and CAT-2(B) exhibit transport properties consistent with system y+, the principal mechanism for cellular uptake of cationic amino acids. In contrast, CAT-2A has tenfold lower substrate affinity, greater apparent maximal velocity and it is much less sensitive to trans-stimulation. In addition to structural and functional aspects, this review discusses the role of the CAT proteins for supplying substrate to NO synthases and the property of the rodent CAT-1 proteins to function as virus receptors.Abbreviations CAT cationic amino acid transporter - m mouse - h human - r rat - Tea T cell early activation protein - CAA cationic amino acids - TM transmembrane spanning domain - rBAT related to b0,+ amino acid transporter - 4F2hc 4F2 heavy chain cell surface antigen - MuLV murine leukemia viruses - Km Michaelis Menten constant  相似文献   

16.
Summary Mouse 6D6 IgG2a and 5B5 IgM monoclonal antibodies which specifically bind murine lung carcinoma cells (3LL cells) were injected to healthy and tumor-bearing mice. In vivo localization was analyzed by counting the tissue radioactivity and by external gamma ray scintigraphy at various times after IV injection of 125I- or 131I-labeled antibodies. The clearance of the two monoclonal antibodies was not modified by the presence of the tumor, and the 6D6 IgG2a was cleared at a rate slower than the 5B5 IgM. Both antibodies gave a high specific uptake at the tumor level; the tumor-to-healthy tissue ratios were higher with the 6D6 IgG2a than the 5B5 IgM; unspecific mouse immunoglobulins (IgG2) did not localize in the tumor. The amount of 6D6 IgG2a antibody still associated with the tumor after 2 days following IV injection was 10 times higher than that of 5B5 IgM, and was still high enough to localize the tumor after 5 days.Imaging experiments confirmed the ability of 6D6 IgG2a to detect the presence of tumor cells. The targeting kinetics determined by computer analysis of camera images indicated a rapid targeting of antibodies in tumor with a maximal concentration after 4–6 h; after 48 h the background was quite low and the 6D6 IgG2a appeared to be specifically localized in the tumor.  相似文献   

17.
18.
Mice with malaria showed unique immunological responses, including the expansion of NK1.1TCRint cells (extrathymic T cells). Since TCRint cells with autoreactivity and autoantibody-producing B cells (B-1 cells) are often simultaneously activated under autoimmune conditions, it was examined whether B-1 cells were activated in the course of malarial infection. From days 14 after infection, B220low B-1 cells appeared in the liver and spleen. The number of B220low B cells was highest at day 14, but the ratio was highest at days 28-35. In parallel with the appearance of B220low cells, autoantibodies against HEp-2 cells and double-stranded DNA were detected in sera. These B220low cells had phenotypes of CD44high, CD23 and CD62L. In sharp contrast, conventional B220high B cells (B-2 cells) were CD44low, CD23+ and CD62L+. These results suggested that malaria immune responses were not mediated by conventional T and B cells but resembled the responses during autoimmune diseases.  相似文献   

19.
Phytochemical investigation of the roots of Ferula elaeochytris made it possible to isolate two sesquiterpene esters, 6-anthraniloyljaeschkeanadiol (elaeochytrin A) and 4β-hydroxy-6α-(p-hydroxybenzoyloxy)dauc-9-ene (elaeochytrin B), as well as eight known compounds: 6-angeloyljaeschkeanadiol, teferidin, ferutinin, 6-(p-hydroxybenzoyl)epoxyjaeschkeanadiol, 6-(p-hydroxybenzoyl)lancerotriol, 5-caffeoylquinic acid, 1,5-dicaffeoylquinic acid and sandrosaponin IX. The cytotoxic activities of all compounds were investigated on K562R (imatinib-resistant) human chronic myeloid leukaemia and DA1-3b/M2BCR-ABL (dasatinib-resistant) mouse leukemia cell line. Elaeochytrin A was the most active compound on both cell lines (IC50 = 12.4 and 7.8 μM, respectively). It was also tested on non-resistant human promyelocytic leukemia cells (HL60, IC50 = 13.1 μM) and was not toxic to normal peripheral blood mononuclear cells up to 100 μM.  相似文献   

20.
Three protease inhibitors (OTI-1-3) have been purified from onion (Allium cepa L.) bulbs. Molecular masses of these inhibitors were found to be 7,370.2, 7,472.2, and 7,642.6 Da by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), respectively. Based on amino acid composition and N-terminal sequence, OTI-1 and -2 are the N-terminal truncated proteins of OTI-3. All the inhibitors are stable to heat and extreme pH. OTI-3 inhibited trypsin, chymotrypsin, and plasmin with dissociation constants of 1.3×10-9 M, 2.3×10-7 M, and 3.1×10-7 M, respectively. The complete amino acid sequence of OTI-3 showed a significant homology to Bowman-Birk family inhibitors, and the first reactive site (P1) was found to be Arg17 by limited proteolysis by trypsin. The second reactive site (P1) was estimated to be Leu46, that may inhibit chymotrypsin. OTI-3 lacks an S-S bond near the second reactive site, resulting in a low affinity for the enzyme. The sequence of OTI-3 was also ascertained by the nucleotide sequence of a cDNA clone encoding a 101-residue precursor of the onion inhibitor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号