首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein-surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein-surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein-surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein-surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the anionic one. This is opposite as observed for several other hemoproteins. The surfactants at low concentrations produce the oligomeric dissociation, which facilitates the iron oxidation, an important factor modulating further oligomeric protein dissociation.  相似文献   

2.
The effects of two ionic surfactants on the oligomeric structure of the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy - form have been studied through the use of several spectroscopic techniques such as electronic optical absorption, fluorescence emission, light scattering, and circular dichroism. The use of anionic sodium dodecyl sulphate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) has allowed to differentiate the effects of opposite headgroup charges on the oligomeric structure dissociation and hemoglobin autoxidation. At pH 7.0, both surfactants induce the protein dissociation and a significant oxidation. Spectral changes occur at very low CTAC concentrations suggesting a significant electrostatic contribution to the protein–surfactant interaction. At low protein concentration, 0.08 mg/ml, some light scattering within a narrow CTAC concentration range occurs due to protein–surfactant precipitation. Light scattering experiments showed the dissociation of the oligomeric structure by SDS and CTAC, and the effect of precipitation induced by CTAC. At higher protein concentrations, 3.0 mg/ml, a precipitation was observed due to the intense charge neutralization upon formation of ion pair in the protein–surfactant precipitate. The spectral changes are spread over a much wider SDS concentration range, implying a smaller electrostatic contribution to the protein–surfactant interactions. The observed effects are consistent with the acid isoelectric point (pI) of this class of hemoglobins, which favors the intense interaction of HbGp with the cationic surfactant due to the existence of excess acid anionic residues at the protein surface. Protein secondary structure changes are significant for CTAC at low concentrations while they occur at significantly higher concentrations for SDS. In summary, the cationic surfactant seems to interact more strongly with the protein producing more dramatic spectral changes as compared to the anionic one. This is opposite as observed for several other hemoproteins. The surfactants at low concentrations produce the oligomeric dissociation, which facilitates the iron oxidation, an important factor modulating further oligomeric protein dissociation.  相似文献   

3.
In this work, MALDI-TOF-MS analysis was performed to obtain information on the molecular mass of the different subunits from the giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) in the oxy-form. Experiments were performed for the whole protein at pH 7.0, for the partially dissociated protein at pH 9.0, and for the fraction obtained from gel filtration in Sephadex G-200, at pH 9.0, corresponding to the isolated monomer d. Besides that, experiments were performed for the whole protein treated with 2-mercaptoethanol in order to monitor the effects of reduction of the disulfide bonds, which are expected to maintain the trimer (abc) in the native molecule. The results are compared to those reported for the homologous hemoglobin of Lumbricus terrestris (HbLt) and some tentative assignments are made for the observed polypeptides. The monomer d is found to exist in, at least, two major forms of identical proportions with masses of 16,355 ± 25 and 16,428 ± 24 Da, respectively. Two minor forms were also observed around 16 kDa for the monomers. Upon disulfide bonds reduction the peak associated to the trimer is absent in the mass spectrum, and new peaks assigned tentatively to the monomers a, b and c on the basis of comparison with Lumbricus terrestris hemoglobin literature data are observed. Their molecular masses were 18,258 ± 30, 16,492 ± 24 and 17,363 ± 17 Da, respectively. Two linker chains for HbGp were also observed at 25,817 ± 50 and 26,761 ± 16 Da, and this result is different from HbLt, where four linker chains were reported in the range 24–32 kDa. Finally, trimers (abc) were observed at 51–52 kDa. This partial characterization, performed for the first time, is an important step in the characterization of subunits of this giant extracellular hemoglobin.  相似文献   

4.
The complexes of horse myoglobin (Mb) with the anionic surfactant sodium dodecyl sulfate (SDS), and with the cationic surfactants cetyltrimethylammonium chloride (CTAC) and decyltrimethylammonium bromide (DeTAB), have been studied by a combination of surface tension measurements and optical spectroscopy, including heme absorption and aromatic amino acid fluorescence. SDS interacts in a monomeric form with Mb, which suggests the existence of a specific binding site for SDS, and induces the formation of a hexacoordinated Mb heme, possibly involving the distal histidine. Fluorescence spectra display an increase of tryptophan emission. Both effects point to an increased protein flexibility. SDS micelles induce both the appearance of two more heme species, one of which has the features of free heme, and protein unfolding. Mb/CTAC complexes display a very different behavior. CTAC monomers have no effect on the absorption spectra, and only a slight effect on the fluorescence spectra, whereas the formation of CTAC aggregates on the protein strongly affects both absorption and fluorescence. Mb/DeTAB complexes behave in a very similar way as Mb/CTAC complexes. The surface activity of the different Mb/surfactant complexes, as well as the interactions between the surfactants and Mb, are discussed on the basis of their structural properties.  相似文献   

5.
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) has a molecular mass (M) of 3600±100 kDa and a standard sedimentation coefficient (s20,w0) of 58 S, estimated by analytical ultracentrifugation (AUC). In the present work, further AUC studies were developed for HbGp, at pH 10.0, which favors oligomeric dissociation into lower M species. The HbGp oligomer is formed by globin chains a, b, c and d plus the linker chains. The pure monomeric fraction, subunit d, and HbGp at pH 10.0, in the presence of β-mercaptoethanol, were also studied. Our results indicate that for samples of pure subunit d, besides the monomeric species with s20,w0 of 2.0 S, formation of dimer of subunit d is observed with s20,w0 of around 2.9 S. For the whole HbGp at pH 10.0 contributions from monomers, trimers and linkers are observed. No contribution from 58 S species was observed for the sample of oxy-HbGp at pH 10.0, showing its complete dissociation. For cyanomet-HbGp form a contribution of 17% is observed for the un-dissociated oligomer, consistent with data from other techniques that show the cyanomet-form is more stable as compared to oxy-HbGp. Masses of HbGp subunits, especially trimer abc and monomeric chains a, b, c and d, were also estimated from sedimentation equilibrium data, and are in agreement with the results from MALDI-TOF-MS.  相似文献   

6.
The binding of several different categories of small molecules to bovine (BSA) and human (HSA) serum albumins has been studied for many years through different spectroscopic techniques to elucidate details of the protein structure and binding mechanism. In this work we present the results of the study of the interactions of BSA and HSA with the anionic sodium dodecyl sulfate (SDS), cationic cethyltrimethylammonium chloride (CTAC) and zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonium-1-propanesulfonate (HPS) monitored by fluorescence spectroscopy of the intrinsic tryptophans at pH 5.0. Similarly to pH 7.0 and 9.0, at low concentrations, the interaction of BSA with these surfactants shows a quenching of fluorescence with Stern-Volmer quenching constants of (1.1+/-0.1)x10(4) M(-1), (3.2+/-0.1)x10(3) M(-1) and (2.1+/-0.1)x10(3) M(-1) for SDS, HPS and CTAC, respectively, which are associated to the 'effective' association constants to the protein. On the interaction of these surfactants with HSA, an opposite effect was observed as compared to BSA, i.e., an enhancement of fluorescence takes place. For both proteins, at low surfactant concentrations, a positive cooperativity was observed and the Hill plot model was used to estimate the number of surfactant binding sites, as well as the association constants of the surfactants to the proteins. It is worthy of notice that the binding constants for the surfactants at pH 5.0 are lower as compared to pH 7.0 and 9.0. This is probably due to fact that the protein at this acid pH is quite compact reducing the accessibility of the surfactants to the hydrophobic cavities in the binding sites. The interaction of myristic acid with both proteins shows a similar fluorescence behaviour, suggesting that the mechanism of the interaction is the same. Recently published crystallographic studies of HSA-myristate complex were used to perform a modelling study with the aim to explain the fluorescence results. The crystallographic structure reveals that a total of five myristic acid molecules are asymmetrically bound in the macromolecule. Three of these sites correspond to higher affinity ones and correlate with high association constants described in the literature. Our models for BSA and HSA with bound SDS suggest that the surfactant could be bound at the same sites as those reported in the crystal structure for the fatty acid. The differences in tryptophan vicinity upon surfactant binding are explored in the models in order to explain the observed spectroscopic changes. For BSA the quenching is due to a direct contact of a surfactant molecule with the indole of W131 residue. It is clear that the binding site in BSA which is very close, in contact with tryptophan W131, corresponds to a lower affinity site, explaining the lower binding constants obtained from fluorescence studies. In the case of HSA the enhancement of fluorescence is due to the removal of static quenching of W214 residue in the intact protein caused by nearby residues in the vicinity of this tryptophan.  相似文献   

7.
The binding of the vasodilator drug papaverine (PAV) to micelles of zwitterionic N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS), cationic cetyltrimethylammonium chloride (CTAC) and anionic sodium dodecylsulfate (SDS) in aqueous solution was studied by 1H NMR and electronic absorption spectroscopy. In the presence of HPS or CTAC, the apparent pK(a) of PAV decreased by about 2 units, while it increased by about 2 units upon binding to SDS. However, the chemical shift patterns of both protonated (PAVH+) and deprotonated (PAV0) forms of PAV are not sensitive to the type of surfactant. The association constants were estimated as 5 +/- 2 M(-1) for PAVH+-CTAC, 8 +/- 3 M(-1) for PAVH+-HPS, (7 +/- 2) x 10(5) M(-1) for PAVH+-SDS, and 1.5 x 10(3) to 3.0 x 10(3) M(-1) for the complexes of PAV0 with all three types of micelles. Using these data, an electrostatic potential difference on the micelle-water interface was calculated as 150 +/- 10 mV for CTAC, 140 +/- 10 mV for HPS and - 140 +/- 10 mV for SDS. The results suggest that PAV aromatic rings are located in the hydrophobic part of the micelle. The electrostatic attraction or repulsion of the protonated quinoline nitrogen and surfactant headgroups changes the affinity of PAV to micelles and, thus, shifts the ionization equilibrium of PAV. The electrostatic potential of HPS micellar surface is determined by the cationic dimethylammonium headgroup fragment, whereas the anionic sulfate fragment attenuates the effective charge of HPS headgroup.  相似文献   

8.
Annelid erythrocruorins are respiratory proteins with high cooperativity and low autoxidation rates. The giant extracellular hemoglobin of the earthworm, Glossoscolex paulistus (HbGp), has a molecular mass of 3.6 MDa. In this work, isothermal titration calorimetry (ITC), together with DLS and fluorescence emission have been used to investigate the interaction of SDS with the HbGp in the oxy‐form, at pH 7.0. Our ITC and DLS results show that addition of SDS induces oxy‐HbGp oligomeric dissociation, while a small amount of protein aggregation is observed only by DLS. Moreover, the oligomeric dissociation process is favored at lower protein concentrations. The temperature effect does not influence significantly the interaction of SDS with the hemoglobin, due to the similarities presented by the critical aggregation concentration (cac) and critical micelle concentration (cmc′) for the mixtures. The increase of oxy‐HbGp concentration leads to a slight variation of the cac values for the SDS‐oxy‐HbGp mixture, attributed mainly to the noncooperative electrostatic binding of surfactant to protein. However, the cmc′ values increase considerably, associated to a more cooperative hydrophobic binding. Complementary pyrene fluorescence emission studies show formation of pre‐micellar structures of the mixture already at lower SDS concentrations. This study opens the possibility of the evaluation of the surfactant effect on the hemoglobin stability by ITC, which is made for the first time with this extracellular hemoglobin. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1065–1076, 2014.  相似文献   

9.
Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.  相似文献   

10.
The interaction of the antimicrobial drug norfloxacin (NFX) with anionic sodium dodecyl sulfate (SDS) and cationic cetyltrimethylammonium bromide (CTAB) micelles was studied using the intrinsic spectroscopic properties of NFX to obtain association constants and molecular modifications. Nonionic Tween® 20 micelles were also investigated, but the spectroscopic properties of NFX did not detect interactions with these micelles, and quenching by iodide suggested a weak association constant around 47 M?1. For SDS and CTAB, UV–Vis absorption spectroscopy, steady-state and time-resolved fluorometry were monitored as a function of surfactant concentration ranging from the premicellar to micellar region. It was found that cationic (pH 4.0) and zwitterionic NFX (pH 7.4) associate with SDS micelles, with binding constants equal to 5.4 × 103 and 1.7 × 103 M?1, respectively. Premicellar interaction slightly decreases the critical micelle concentration of SDS. Association of anionic NFX (pH 10.6) is very weak. The fluorescence spectrum and lifetime showed that SDS-associated NFX is cationic and that the heterocycle penetrates the interfacial environment of decreased polarity. Cationic CTAB micelles do not bind cationic NFX, and the association constant with zwitterionic NFX is two orders of magnitude lower than that of SDS micelles. From a pharmacological point of view, it is important that at neutral pH, NFX presented a two orders of magnitude higher affinity for anionic than for cationic sites, and did not interact significantly with nonionic or zwitterionic micelle interfaces.  相似文献   

11.
Inhibition of Aflatoxin Production by Surfactants   总被引:5,自引:3,他引:2       下载免费PDF全文
The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants.  相似文献   

12.
The effect of anionic and cationic surfactants on acid phosphatase denaturation has been extensively studied. Low molecular mass (LMr) protein tyrosine phosphatase (PTP), a key regulatory enzyme involved in many different processes in the cell, was distinctly affected by anionic (homologous series of n-alkyl sulfates (C8-C14)) and cationic (n-alkyl trimethylammonium bromides (C12-C16)) surfactants. At concentrations 10-fold lower critical micellar concentration (cmc) values, the enzyme was completely inactivated in the presence of anionic surfactants, in a process independent of the pH, and dependent on the chain length of the surfactants. Under the same conditions, the effect of cationic surfactants on the enzyme activity was pH-dependent and only at pH 7.0 full inactivation was observed at concentrations 10-fold higher cmc values. In contrast to cationic surfactants the effect of anionic surfactants on the enzyme activity was irreversible and was not affected by the presence of NaCl. Inorganic phosphate, a known competitive inhibitor of PTP, protected the enzyme against inactivation by the surfactants. Our results suggest that the inactivation of the LMr PTP by anionic and cationic surfactants involved both electrostatic and hydrophobic interactions, and that the interactions enzyme-surfactants probably occurred at or near the active site.  相似文献   

13.
The effect of anionic (sodium dodecyl sulphate or SDS) and cationic (cetyltrimethylammonium bromide or CTAB) surfactants on the stability of binary bacterial coaggregates comprising Acinetobacter johnsonii S35 and Oligotropha carboxidovorans S23 (both sewage sludge isolates) was studied and compared with that on the complex sewage sludge flocs. Both SDS and CTAB enhanced the bacterial coaggregation at their lower concentrations of 0.2 and 0.07 mg ml(-1), respectively. However, complete deflocculation of coaggregates was observed at 1 mg ml(-1) SDS and 0.3 mg l(-1) CTAB concentrations. Further, sewage sludge flocs did not deflocculate in the presence of CTAB, although a concentration-dependent deflocculation was observed in the presence of SDS. A. johnsonii S35 and O. carboxidovorans S23 cells were separately pretreated (prior to coaggregation) with the surfactants. In spite of the partial (complete) loss of viability during SDS (CTAB) pretreatment, washed cells still retained hydrophobic character and displayed significant coaggregation (aggregation index ranging from 84% to 97% in comparison to 96% in the case of non-treated cells), demonstrating reversibility of the surfactant induced deflocculation. Further, when exposed to lower concentration of surfactants (0.2 mg ml(-1) SDS), coaggregates were more resistant (76% viability) as compared to the individual partner (S35: 52%; S23: 39% viability). Since the coaggregates are stable and provide protection from surfactants at lower concentrations (those normally expected in the sewage treatment plants), their presence as well as a sustained role in the sewage sludge bioflocculation is evident.  相似文献   

14.
Yin DS  Yang WY  Ge ZQ  Yuan YJ 《Carbohydrate research》2005,340(6):1201-1206
The interactions between sodium hyaluronate, an anionic polysaccharide, with surfactants (anionic and nonionic) were investigated using pyrene fluorescence measurement methods. The change of micropolarity produced by the interaction was monitored by the measurement of emission intensity ratio between the first and third bands (I1/I3), and the intensity ratio of the excimer and the third vibration monomer band (I(E)/I(M)). Because the hydrophilic heads on the SDS were attracted by the domains formed by the hydroxyl groups of hyaluronate, the I1/I3 ratio was reduced by the addition of hyaluronate at lower than 0.06% of sodium dodecyl sulfate (SDS) concentration. No aggregation was observed between hyaluronate and nonionic surfactants (Tween-80 and Cremophor EL) in the whole concentration range studied. At a higher concentration of surfactant, the I1/I3 ratio of hyaluronate/surfactant was influenced by the addition of saccharide (glucose, lactose, or mannitol). However, the effect of saccharide could be reduced by the addition of salt.  相似文献   

15.
In this work, isothermal titration and differential scanning calorimetric methods, in combination with pyrene fluorescence emission and dynamic light scattering have been used to investigate the interaction of dodecyltrimethylammonium bromide (DTAB) with the giant extracellular Glossoscolex paulistus hemoglobin (HbGp) in the oxy‐form, at pH values around the isoelectric point (pI ≈ 5.5). Our ITC results have shown that the interaction of DTAB with the hemoglobin is more intense at pH 7.0, with a smaller cac (critical aggregation concentration) value. The increase of protein concentration does not influence the cac value of the interaction, at both pH values. Therefore, the beginning of the DTAB‐oxy‐HbGp premicellar aggregates formation, in the cac region, is not affected by the increase of protein concentration. HSDSC studies show higher Tm values at pH 5.0, in the absence and presence of DTAB, when compared with pH 7.0. Furthermore, at pH 7.0, an aggregation process is observed with DTAB in the range from 0.75 to 1.5 mmol/L, noticed by the exothermic peak, and similar to that observed for pure oxy‐HbGp, at pH 5.0, and in the presence of DTAB. DLS melting curves show a decrease on the hemoglobin thermal stability for the oxy‐HbGp‐DTAB mixtures and formation of larger aggregates, at pH 7.0. Our present data, together with previous results, support the observation that the protein structural changes, at pH 7.0, occur at smaller DTAB concentrations, as compared with pH 5.0, due to the acidic pI of protein that favors the oxy‐HbGp‐cationic surfactant interaction at neutral pH. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 199–211, 2016.  相似文献   

16.
The surfactant-lysozyme interaction was investigated by circular dichroism, fluorescence, UV, dynamic light scattering, surface tension, turbidity measurements and lysozyme activity assay. A new way of refolding of lysozyme was found. It was shown that the lysozyme unfolded by anionic surfactants could be renatured by adding cationic surfactants. That is, lysozyme formed precipitate with anionic surfactants, the precipitates could be dissolved by adding a cationic surfactant solution, and then the lysozyme was refolded to its native state spontaneously. Different couples of anionic surfactants and cationic surfactants including C10SO3/C10NE, C12SO3/C10NE, C10SO3/C12NE, C10SO3/C12NB, C10SO4/C10NE and C12SO4/C10NE (C(n)SO3, C(n)SO4, C(n)NE and C(n)NB represent sodium alkyl sulfonate/sulfate, alkyl triethyl/butyl ammonium bromide respectively) were investigated, all of them gave similar results. The results were explained in terms of the differences between the interaction of anionic-cationic surfactants and that of surfactant-lysozyme. It was thought that the formation of mixed micelles of anionic-cationic surfactants is a more favorable process than that of lysozyme-surfactant complexes, which induces the dissociation of lysozyme-surfactant complexes when cationic surfactants were added.  相似文献   

17.
Candida yeasts are opportunistic pathogens responsible for infections in immunocompromised individuals. Among the virulence factors present in these yeasts we can mention the ability to adhere to host cells, exoenzyme production and germ tube formation. Several compounds, such as antifungal agents, plants extracts, protein inhibitors and surfactants, have been tested regarding their capacity in inhibit Candida spp. virulence factors. Among these compounds, a significant lower number of works are focused on the inhibition action caused by different types of surfactant. The present work aimed to evaluate the effect generated by the surfactants cetyltrimethylammonium chloride (CTAC), sodium dodecyl sulfate (SDS), N-hexadecyl-NN′-dimethyl-3-ammonio-1-propane-sulfonate (HPS) and octylphenoxypolyethoxyethanol (Triton X-100) on the viability, adhesion ability and exoenzyme production by Candida species. CTAC and HPS were capable to inhibit Candida spp. growth at very low concentrations. All surfactants demonstrated to be capable to inhibit the adhesion of Candida species to buccal epithelial cells (BEC) and the proteinase production. On the other hand, the phospholipase production remained unaltered after the treatment with these compounds. The present data denote that cationic and zwitterionic surfactants are interesting prototypes of inhibitory agents against Candida spp., which is probably associated with the cationic punctual charge of both surfactants. The results are discussed in details in agreement with recent reports from literature.  相似文献   

18.
Hexagonal bilayer hemoglobins (Hbs) are approximately 3.6-MDa complexes of approximately 17-kDa globin chains and 24-32-kDa, nonglobin linker chains in a approximately 2:1 mass ratio found in annelids and related species. Studies of the dissociation and reassembly of Lumbricus terrestris Hb have provided ample evidence for the presence of a approximately 200-kDa linker-free subassembly consisting of monomer (M) and disulfide-bonded trimer (T) subunits. Electrospray ionization mass spectrometry (ESI-MS) of the subassemblies obtained by gel filtration of partially dissociated L. terrestris and Arenicola marina Hbs showed the presence of noncovalent complexes of M and T subunits with masses in the 213. 3-215.4 and 204.6-205.6 kDa ranges, respectively. The observed mass of the L. terrestris subassembly decreased linearly with an increase in de-clustering voltage from approximately 215,400 Da at 60 V to approximately 213,300 Da at 200 V. In contrast, the mass of the A. marina complex decreased linearly from 60 to 120 V and reached an asymptote at approximately 204,600 Da (180-200 V). The decrease in mass was probably due to the progressive removal of complexed water and alkali metal cations. ESI-MS at an acidic pH showed both subassemblies to consist of only M and T subunits, and the experimental masses demonstrated them to have the composition M(3)T(3). Because there are three isoforms of M and four isoforms of T in Lumbricus and two isoforms of M and 5 isoforms of T in Arenicola, the masses of the M(3)T(3) subassemblies are not unique. A random assembly model was used to calculate the mass distributions of the subassemblies, using the known ESI-MS masses and relative intensities of the M and T subunit isforms. The expected mass of randomly assembled subassemblies was 213,436 Da for Lumbricus Hb and 204,342 Da for Arenicola Hb, in good agreement with the experimental values.  相似文献   

19.
The interaction of serum albumin with microdispersed forms of anion-exchange resins AV-16 GS and AV-17 I (USSR), obtained by mechanochemical destruction of polymers, and with low-molecular weight anionic (oleic acid, sulfonol) and cationic (cetazol, catamine) surfactants was being studied. Catamine and cetazol as well as microdispersions of anion-exchange resins are able to precipitate 90% of protein from the equilibrium solution, the content of protein in the initial solution being constant and equal to 6.5 mg/ml. Studies on the equilibrium in the system serum albumin--microdispersions of anion-exchange resins in the presence of ionogenic surfactants revealed that cationic surfactants are able to increase the amount of the precipitated protein, while in the presence of anionic surfactants the interactions between the protein macromolecules and microdispersions of polyelectrolytes become much weaker.  相似文献   

20.
The interaction of bovine plasma albumin (BPA) with tetradecyltri-methylammonium bromide (TTAB) was studied at pH 9.0. When the system BPA-TTAB was analyzed by the gel electrophoresis, the pattern changed with the molar mixing ratio (TTAB/BPA). At molar mixing ratio 12, for example, zones 1, 2, 3, 4, and 5 were observed. Component 1 is a monomer and component 2 is a dimer of BPA. Components 3–5 are further aggregates of BPA. Thus, the intermolecular SH - SS exchange reaction occurs between BPA molecules unfolded by cationic detergent, leading to the formation of a series of lower aggregates of BPA. Under some conditions, partial precipitation of BPA occurred. Components 1′ and 1″, which are modified monomeis, were observed at certain concentrations of detergent.Studies were also made using a series of cationic detergents differing in the length of hydrocarbon chain C6C12. Including TTAB, the longer the hydrocarbon chain, the more remarkable was the effect on BPA.The effect of cationic detergent on BPA resembles that of urea insofar as gel electrophoresis is concerned. Furthermore the denatureation of BPA by cationic detergent resembles that by heat and by high pressure. These four agents are initiators of SH - SS exchange reaction for the protein.The effect of cationic detergent differs entirely from that of the anionic detergent such as sodium dodecyl sulfate (SDS). The anionic detergent does not initiate the intermolecular exchange reaction at pH 9.0 even when the molar mixing ratio SDS/BPA is high enough to make BPA unfold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号