首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Escherichia coli biotin holoenzyme synthetase, BirA, catalyzes transfer of biotin to the epsilon amino group of a specific lysine residue of the biotin carboxyl carrier protein (BCCP) subunit of acetyl-CoA carboxylase. Sequences of naturally biotinylated substrates are highly conserved across evolutionary boundaries, and cross-species biotinylation has been demonstrated in several systems. To define the minimal substrate requirements in BirA-catalyzed biotinylation, we have measured the kinetics of modification of a 23-residue peptide previously identified by combinatorial methods. Although the sequence of the peptide bears little resemblance to the biotinylated sequence in BCCP, it is enzymatically biotinylated in vivo. Rates of biotin transfer to the 23-residue peptide are similar to those determined for BCCP. To further elucidate the sequence requirements for biotinylation, transient kinetic measurements were performed on a series of amino- and carboxy-terminal truncations of the 23-mer. The results, determined by stopped-flow fluorescence, allowed identification of a 14-residue peptide as the minimum required sequence. Additional support was obtained using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of peptides that had been incubated with an excess of biotinyl-5'-adenylate intermediate and catalytic amounts of BirA. Results of these measurements indicate that while kinetically inactive truncations showed no significant shift in molecular mass to the values expected for biotinylated species, kinetically active truncations exhibited 100% biotinylation. The specificity constant (k(cat)/Km) governing BirA-catalyzed biotinylation of the 14-mer minimal substrate is similar to that determined for the natural substrate, BCCP. We conclude that the 14-mer peptide efficiently mimics the biotin acceptor function of the much larger protein domain normally recognized by BirA.  相似文献   

2.
A number of peptide tags are available to facilitate the characterization of recombinant proteins. We have tested the bacterial oxaloacetate decarboxylase biotinylation domain for its efficacy in tagging recombinant proteins in vivo in Leishmania. To achieve efficient biotinylation, Leishmania also had to be co-transformed with the gene for bacterial biotin protein ligase (birA gene product). The recombinant chimeric protein could be detected on blots probed with avidin-horseradish peroxidase and purified on immobilized monomeric avidin resins.  相似文献   

3.
Biotinylated magnetic nanoparticles were constructed by displaying biotin acceptor peptide (BAP) or biotin carboxyl carrier protein (BCCP) on the surface of bacterial magnetic particles (BacMPs) synthesized by Magnetospirillum magneticum AMB-1. BAP-displaying BacMPs (BAP-BacMPs) were extracted from bacterial cells and incubated with biotin and Escherichia coli biotin ligase. Then the in vitro biotinylation of BAP-BacMPs was confirmed using alkaline phosphatase-labeled antibiotin antibody. In contrast, BacMPs displaying the intact 149 residues of AMB-1 BCCP (BCCP-BacMPs) and displaying the COOH-terminal 78 residues of BCCP (BCCP78-BacMPs) were biotinylated in AMB-1 cells. The in vivo biotinylation of BCCP-BacMPs and BCCP78-BacMPs was thought to be performed by endogenous AMB-1 biotin ligase. Streptavidin was introduced onto biotinylated BacMPs by simple mixing. In an analysis using tetramethyl rhodamine isocyanate-labeled streptavidin, approximately 15 streptavidin molecules were shown to be immobilized on a single BCCP-BacMP. Furthermore, gold nanoparticle-BacMP composites were constructed via the biotin-streptavidin interaction. The conjugation system developed in this work provides a simple, low-cost method for producing biotin- or streptavidin-labeled magnetic nanoparticles. Various functional materials can be site selectively immobilized on these specially designed BacMPs. By combining the site-selective biotinylation technology and the protein display technology, more innovative and attractive magnetic nanomaterials can be constructed.  相似文献   

4.
Due to its strength and specificity, the interaction between avidin and biotin has been used in a variety of scientific and medical applications ranging from immunohistochemistry to drug targeting. The present study describes two methods for biotinylation of proteins secreted from eukaryotic cells using the Escherichia coli biotin protein ligase. In one system the biotin ligase was co-secreted from the cells along with substrate protein enabling extracellular biotinylation of the tagged protein. In the other system, biotin ligase was engineered to be retained in the endoplasmic reticulum (ER) and metabolically biotinylates the secretory protein as it passes through the ER. An engineered antibody fragment, a diabody with specificity for carcinoembryonic antigen (CEA) was fused to the biotin acceptor domain (123 amino acid) of Propionibacterium shermanii. Coexpression of the fusion protein with ER retained biotin ligase showed higher biotinylation efficiency than biotinylation by co-secreted ligase. Biotinylation of the anti-CEA diabody tagged with a short (15 amino acid, Biotin Avitag) biotin acceptor peptide was also successful. Utilization of ER retained biotin ligase for biotinylation of protein is an attractive alternative for efficiently producing uniformly biotinylated recombinant proteins for a variety of avidin-biotin technologies.  相似文献   

5.
6.
The in vivo perfusion of rodent models of disease with biotin derivatives and the subsequent comparative proteomic analysis of healthy and diseased tissues represent a promising methodology for the identification of vascular accessible biomarkers. A novel, triply charged biotinylation reagent, NHS‐β‐Ala‐(L ‐Asp)3‐biotin, was synthesized and validated in terms of its applicability for in vivo protein biotinylation. Compared to sulfo‐NHS‐LC‐biotin, NHS‐β‐Ala‐(L ‐Asp)3‐biotin exhibited a reduced membrane permeability and a preferential labeling of proteins localized in compartments readily accessible in vivo from the vasculature.  相似文献   

7.
Scheurer SB  Roesli C  Neri D  Elia G 《Proteomics》2005,5(12):3035-3039
2-D peptide mapping is a novel technique for the relative quantification of membrane proteins (Scheurer S. et al., Proteomics 2005, in press). Using closely related metastatic and nonmetastatic teratocarcinoma cell lines as a model system, we have performed a comparative analysis of different biotinylation reagents, tryptic digestion procedures, and mass spectrometric techniques, with the aim to increase the number of proteins identified by 2-D peptide mapping. Our experience indicates that the LC-MALDI TOF/TOF technique is superior to LC-ESI MS/MS in terms of the number of proteins identified and confidence in protein identification. Furthermore, the best results were obtained by tryptic digestion of proteins eluted from a streptavidin column using a cleavable biotin derivative.  相似文献   

8.
The extremely tight binding between biotin and avidin or streptavidin makes labeling proteins with biotin a useful tool for many applications. BirA is the Escherichia coli biotin ligase that site-specifically biotinylates a lysine side chain within a 15-amino acid acceptor peptide (also known as Avi-tag). As a complementary approach to in vivo biotinylation of Avi-tag-bearing proteins, we developed a protocol for producing recombinant BirA ligase for in vitro biotinylation. The target protein was expressed as both thioredoxin and MBP fusions, and was released from the corresponding fusion by TEV protease. The liberated ligase was separated from its carrier using HisTrap HP column. We obtained 24.7 and 27.6 mg BirA ligase per liter of culture from thioredoxin and MBP fusion constructs, respectively. The recombinant enzyme was shown to be highly active in catalyzing in vitro biotinylation. The described protocol provides an effective means for making BirA ligase that can be used for biotinylation of different Avi-tag-bearing substrates.  相似文献   

9.
Enzyme-catalyzed addition of biotin to proteins is highly specific. In any single organism one or a small number of proteins are biotinylated and only a single lysine on each of these proteins is modified. A detailed understanding of the structural basis for the selective biotinylation process has not yet been elucidated. Recently certain mutants of the Escherichia coli biotin protein ligase have been shown to mediate "promiscuous" biotinylation of proteins. It was suggested that the reaction involved diffusion of a reactive activated biotin intermediate, biotinoyl-5'-AMP, with nonspecific proteins. In this work the reactivity of this chemically synthesized intermediate toward the natural target of enzymatic biotinylation, the biotin carboxyl carrier protein, was investigated. The results indicate that the intermediate does, indeed, react with target protein, albeit at a significantly slower rate than the enzyme-catalyzed process. Surprisingly, analysis of the products of nonenzymatic biotinylation indicates that of five lysine residues in the protein only the physiological target side chain is modified. These results indicate that either the environment of this lysine residue or its intrinsic properties render it highly reactive to nonenzymatic biotinylation mediated by biotinoyl-5'-AMP. This reactivity may be important for its selective biotinylation in vivo.  相似文献   

10.
Miller, B. T., T. J. Collins, M. E. Rogers and A. Kurosky. Peptide biotinylation with amine-reactive esters: differential side chain reactivity. Peptides 18(10) 1585–1595, 1997.—N-hydroxysuccinimide (NHS) esters of biotin are reported to react specifically with amino groups of peptides and proteins. However, we have found that these reagents can readily acylate other functional groups in specific peptide sequences under relatively mild conditions. We have extended our inquiry of sequence-dependent acylation by evaluating the reactivity of a variety of commonly employed biotinylation reagents typically used for amino group modification. These included the p-nitrophenyl ester of biotin, NHS-esters of biotin containing aminohexanoic acid spacer arms, and a sulfonated NHS-biotin ester that contained a disulfide bond within its spacer. The decapeptide [D-Lys6]gonadotropin releasing hormone was employed as a model peptide. Reaction products were characterized by high-performance liquid chromatography, amino acid compositional analysis, reaction with hydroxylamine, and mass spectrometry. In addition to the O-acylation of Ser4 and Tyr5 in this peptide, we have also identified a novel biotinylation of the Arg8 side chain.  相似文献   

11.
Protein biotinylation, a rare form of post‐translational modification, is found in enzymes required for lipid biosynthesis. In mycobacteria, this process is essential for the formation of their complex and distinct cell wall and has become a focal point of drug discovery approaches. The enzyme responsible for this process, biotin protein ligase, substantially varies in different species in terms of overall structural organization, regulation of function and substrate specificity. To advance the understanding of the molecular mechanism of biotinylation in Mycobacterium tuberculosis we have biochemically and structurally characterized the corresponding enzyme. We report the high‐resolution crystal structures of the apo‐form and reaction intermediate biotinyl‐5'‐AMP‐bound form of M. tuberculosis biotin protein ligase. Binding of the reaction intermediate leads to clear disorder‐to‐order transitions. We show that a conserved lysine, Lys138, in the active site is essential for biotinylation.  相似文献   

12.
Escherichia coli biotin ligase can attach biotin molecules to a lysine residue of biotin acceptor peptide (BAP), and biotinylation of particular BAP-fused proteins in cells was carried out by coexpression of E. coli biotin ligase (in vivo biotinylation). This in vivo biotinylation technology has been applied for protein purification, analysis of protein localization, and protein-protein interaction in eukaryotic cells, while such studies have not been reported in bacterial cells. In this study, in vivo biotinylation of bacterial magnetic particles (BacMPs) synthesized by Magnetospirillum magneticum AMB-1 was attempted by heterologous expression of E. coli biotin ligase. To biotinylate BacMPs in vivo, BAP was fused to a BacMP surface protein, Mms13, and E. coli biotin ligase was simultaneously expressed in the truncated form lacking the DNA-binding domain. This truncation-based approach permitted the growth of AMB-1 transformants when biotin ligase was heterologously expressed. In vivo biotinylation of BAP on BacMPs was confirmed using an alkaline phosphatase-conjugated antibiotin antibody. The biotinylated BAP-displaying BacMPs were then exposed to streptavidin by simple mixing. The streptavidin-binding capacity of BacMPs biotinylated in vivo was 35-fold greater than that of BacMPs biotinylated in vitro, where BAP-displaying BacMPs purified from bacterial cells were biotinylated by being mixed with E. coli biotin ligase. This study describes not only a simple method to produce biotinylated nanomagnetic particles but also a possible expansion of in vivo biotinylation technology for bacterial investigation.Biotin/streptavidin binding is the strongest noncovalent interaction known in nature (Kd [dissociation constant], ∼10−15 M) (10), and this tight binding is one of the most general tools for biological research and has been widely used for biomolecular detection (11, 12), immobilization (14, 19), and recovery (15). Therefore, it is of great significance to biotinylate biomolecules, in particular, proteins without functional inhibition. For this purpose, the method for site-selective biotinylation of proteins had been developed using biotin ligase. Biotin ligase catalyzes the posttranslational biotinylation of biotin enzymes, such as acetyl coenzyme A (acetyl-CoA) carboxylase, and introduces biotin into a specific lysine residue of a biotin carboxyl carrier protein (BCCP), a subunit of biotin enzymes (13). In early studies, BCCP (∼100 amino acid residues) had been fused with the proteins of interest for biotinylation by biotin ligase (7); however, there was a concern that fused BCCP might disrupt the function of target proteins. Recently, biotin acceptor peptides (BAPs) had replaced BCCP due to the advantage of small size. BAPs, with 15 to 23 amino acid residues, were screened from a peptide library as peptide tags biotinylated by Escherichia coli biotin ligase (4, 25). BAP-fused proteins can be biotinylated outside the cells by adding biotin and purified E. coli biotin ligase with Mg2+ and ATP (in vitro biotinylation). Furthermore, it is also possible to biotinylate BAP-fused proteins inside the cells with coexpression of E. coli biotin ligase (in vivo biotinylation) because BAP is specifically recognized only by E. coli biotin ligase. This in vivo biotinylation technology has been applied in eukaryotic cells to purify the proteins by using streptavidin-immobilized resin (8, 24, 28), because biotin/streptavidin interaction permits stringent washing to eliminate the nonspecific binding. Specific biotinylation can be applied also for protein localization analysis. Using fluorophore- or gold nanoparticle-labeled streptavidin, biotinylated proteins were clearly observed in a previous study (27). Recently, a novel technique to detect protein-protein interaction by fusing BAP and biotin ligase was developed by Ting''s group. BAP and biotin ligase were fused to different two proteins, and then the interaction of these proteins was successfully evaluated via biotinylation of BAP (9). In vivo biotinylation technology using heterologously expressed E. coli biotin ligase should be equally useful for prokaryotes; however, such studies have not been reported for bacterial cells.Magnetospirillum magneticum AMB-1, a magnetotactic bacterium, synthesizes intracellular nanosized bacterial magnetic particles (BacMPs) of 50 to 100 nm; these are surrounded by a lipid bilayer membrane, possess a single magnetic domain of magnetite, and exhibit strong ferrimagnetism (18). Furthermore, functional proteins have been displayed on BacMP surfaces through gene fusion techniques (21, 30, 31). BacMP membrane proteins, including Mms13, were used as anchor proteins; this approach permits functional proteins to be localized efficiently and oriented appropriately on BacMPs (31). We recently reported a novel method for the simple production of biotin-labeled magnetic particles through protein display techniques, where introduction of the biotin moiety onto BacMPs was carried out by the endogenous biotin ligase (17). For the biotinylation of BacMPs, we screened the gene encoding BCCP in the AMB-1 genome and displayed it on the surface of BacMPs using an anchor protein, Mms13. BCCP-displaying BacMPs were biotinylated by endogenous AMB-1 biotin ligase in the cells with high efficiency. This in vivo modification approach could be applied for construction of BacMP-quantum dot nanocomposites toward multicolor labeling of cancer cells, where BCCP and antibody carrier protein (protein G) were simultaneously displayed in tandem (16). However, the size of BCCP, with 149 amino acid residues and a mass of 15.6 kDa, makes it rather large for use as a labeling tag. Although it would be preferable to use a smaller peptide, BAP, for the tag to minimize effects on the flanking proteins for future applications, BAP was not recognized and biotinylated by endogenous AMB-1 biotin ligase (17).In this study, in vivo biotinylation of BacMPs was attempted by heterologous expression of E. coli biotin ligase and Mms13-BAP fusion protein in AMB-1 cells. First, the method for effective expression of E. coli biotin ligase in bacterial cells was optimized. Then site-selective biotinylation of BAP on BacMPs was confirmed. Finally, the obvious advantage of in vivo biotinylation of BAP-displaying BacMPs compared with the in vitro biotinylation method was demonstrated.  相似文献   

13.
Streptavidin and its homologs (together referred to as streptavidin) are widely used in molecular science owing to their highly selective and stable interaction with biotin. Other factors also contribute to the popularity of the streptavidin–biotin system, including the stability of the protein and various chemical and enzymatic biotinylation methods available for use with different experimental designs. The technology has enjoyed a renaissance of a sort in recent years, as new streptavidin variants are engineered to complement native proteins and novel methods of introducing selective biotinylation are developed for in vitro and in vivo applications. There have been notable developments in the areas of catalysis, cell biology, and proteomics in addition to continued applications in the more established areas of detection, labeling and drug delivery. This review summarizes recent advances in streptavidin engineering and new applications based on the streptavidin–biotin interaction.  相似文献   

14.
In this work we describe the production of site-specific biotinylated human myeloid differentiation factor 88 (MyD88). A vector containing a coding sequence for a peptide derived from the carboxyl terminus of the Klebsiella pneumoniae oxalacetate decarboxylase α subunit was used to allow expression and biotinylation of MyD88 in Drosophila melanogaster Schneider 2 cell cytoplasm. As estimated by a comparison of Schneider 2 lysate with standard protein, the maximum expression level was 1.3 μg 107 cells−1. About 4 mg of biotinylated protein was purified by affinity chromatography on monomeric avidin from a I-L culture. Exogenous biotin added to the culture medium increased the biotinylation efficiency of the expressed protein. Biotinylated MyD88 produced in Drosophila cells was able to precipitate recombinant MyD88 expressed in human embryonic kidney cells. The stable expression of MyD88 in Drosophila Schneider 2 cells offers a convenient and attractive method for large-scale production, which may be required to clarify the role of MyD88 in the inflammatory response. Moreover, site-specific biotinylation of MyD88 provides a useful tag for interaction assays where high sensitivity is required.  相似文献   

15.
Seeds of Pisum sativum contain a biotinyl polypeptide called SBP65 that behaves as a putative sink for the free vitamin, representing more than 90% of the total protein-bound biotin in mature seeds. A cDNA encoding SBP65 was cloned and sequenced. The deduced primary structure of the protein was confirmed by protein sequencing. Peptide sequencing also indicated binding of the biotin to lysine 103. The biotinylation domain of SBP65 differs markedly from that of presently known biotin enzymes. Molecular analysis of the protein sequence reveals an extremely hydrophilic protein containing several repeated motifs. These properties, as well as the temporal and spatial patterns of expression of this protein, suggest that SBP65 belongs to the LEA (late embryogenesis-abundant) group of proteins.  相似文献   

16.
Chemical protein biotinylation and streptavidin or anti‐biotin‐based capture is regularly used for proteins as a more controlled alternative to direct coupling of the protein on a biosensor surface. On biotinylation an interaction site of interest may be blocked by the biotin groups, diminishing apparent activity of the protein. Minimal biotinylation can circumvent the loss of apparent activity, but still a binding site of interest can be blocked when labeling an amino acid involved in the binding. Here, we describe reaction condition optimization studies for minimal labeling. We have chosen low affinity Fcγ receptors as model compounds as these proteins contain many lysines in their active binding site and as such provide an interesting system for a minimal labeling approach. We were able to identify the most critical parameters (protein:biotin ratio and incubation pH) for a minimal labeling approach in which the proteins of choice remain most active toward analyte binding. Localization of biotinylation by mass spectrometric peptide mapping on minimally labeled material was correlated to protein activity in binding assays. We show that only aiming at minimal labeling is not sufficient to maintain an active protein. Careful fine‐tuning of critical parameters is important to reduce biotinylation in a protein binding site.  相似文献   

17.
We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1‐PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N‐hydroxysuccinimidobiotin (NHS‐biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS‐biotin when compared with the [PB1‐PA] heterodimer. Mutational analysis of residues in two such regions—at K265 and K481 of PB1, which were about three‐ and twofold, respectively, less accessible to biotinylation in the PB1‐PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q‐POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein–protein interaction interfaces. The Q‐POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs.  相似文献   

18.
We have developed an expression system capable of producing large quantities of low cost, specific peptides that are either His12‐tagged, biotinylated, or unlabeled. The flexibility of this peptide system is suitable for interaction studies via surface plasmon resonance (SPR), co‐crystallization, and enzyme‐linked immunosorbent assay. Gene blocks containing peptide sequences of interest in addition to a 15 amino acid AviTag?, were cloned into a vector expressing an N‐terminal maltose binding protein. The constructs were expressed and purified, and the molecular weights of the recombinant proteins were estimated by analytical size exclusion chromatography. Successful in situ biotinylation of the AviTag was confirmed by anti‐biotin western blot and was used for coupling to the surface plasmon resonance chip. We were able to validate, as a proof of concept study, the specific protein–protein interaction of Plasmodium falciparum aldolase (PfAldolase) with three different cytoplasmic adhesin tail peptides from the family of thrombospondin‐related anonymous proteins (TRAPs), and to determine their affinities. This method of peptide production enables high yield production of peptides in a two‐day, cost effective manner. This tool will allow us to screen for protein–protein interaction inhibitors directed toward the liver stage and blood stage complexes of the glideosome in Plasmodium species. Adaptation of this tool will allow researchers to pursue their own studies of protein–protein interactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Biotin functions as a covalently bound cofactor of biotindependent carboxylases. Biotin attachment is catalyzed by biotin protein ligases, called holocarboxylase synthetase in mammals and BirA in prokaryotes. These enzymes show a high degree of sequence similarity in their biotinylation domains but differ markedly in the length and sequence of their N terminus. BirA is also the repressor of the biotin operon, and its DNA attachment site is located in its N terminus. The function of the eukaryotic N terminus is unknown. Holocarboxylase synthetase with N- and C-terminal deletions were evaluated for the ability to catalyze biotinylation after expression in Escherichia coli using bacterial and human acceptor substrates. We showed that the minimum functional protein is comprised of the last 349 of the 726-residue protein, which includes the biotinylation domain. Significantly, enzyme containing intermediate length, N-terminal deletions interfered with biotin transfer and interaction with different peptide acceptor substrates. We propose that the N terminus of holocarboxylase synthetase contributes to biotinylation through N- and C-terminal interactions and may affect acceptor substrate recognition. Our findings provide a rationale for the biotin responsiveness of patients with point mutations in the N-terminal sequence of holocarboxylase synthetase. Such mutant enzyme may respond to biotin-mediated stabilization of the substrate-bound complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号