共查询到20条相似文献,搜索用时 0 毫秒
1.
D A Theocharis D Synetos D L Kalpaxis D Drainas C Coutsogeorgopoulos 《Archives of biochemistry and biophysics》1992,292(1):266-272
A cell-free system derived from Escherichia coli has been used in order to study the kinetics of inhibition of peptide bond formation with the aid of the puromycin reaction in solution. A similar study has been carried out earlier on a solid support matrix with the same inhibitors. We find that the overall pattern of the kinetics of inhibition is the same in the two systems. At low concentrations of inhibitor there is a competitive phase of inhibition, whereas at higher concentrations of inhibitor the type of inhibition becomes mixed noncompetitive. The values of Ki of the competitive phase in the system in solution are: 5.8 microM (amicetin), 0.2 microM (blasticidin S), 0.5 microM (chloramphenicol), and 0.5 microM (tevenel). The inhibitors amicetin, blasticidin S, and tevenel interact with the ribosome in a reaction which is slower than that of the substrate puromycin, showing clear-cut characteristics of slow-onset inhibition in both systems. Chloramphenicol, on the other hand does not easily show such a delay in solution. It interacts with the ribosome relatively faster than the other three antibiotics. Despite this, chloramphenicol too shows characteristics of time-dependent inhibition. 相似文献
2.
D A Theocharis 《The International journal of biochemistry》1992,24(5):719-723
1. A cell-free system derived from E. coli has been used in this study. The process of peptide bond formation was assessed with the aid of the puromycin reaction, which is catalyzed by peptidyltransferase. 2. This reaction is inhibited by heparin, in contrast, this reaction is activated by hyaluronic acid. 3. The presence of heparin decreases the percentage of formed initiation complex (complex C), but hyaluronic acid, chondroitin sulphate and keratan sulphate have no effect on the formation of complex C. 4. From other types of glycosaminoglycans, only hyaluronic acid increases the stability of active complex C. 相似文献
3.
Protein carboxymethylase from bovine anterior pituitary is found to be capable of carboxymethylating proteins in an in vitro protein synthesizing system which includes S-adenosyl-L-methionine-[14C methyl], wheat germ ribosomes and oviduct mRNA. Optimal carboxymethylation is inhibited by puromycin indicating the requirement for de novo protein synthesis. Ultracentrifugal profiles show that carboxymethylated proteins are associated with ribosomal absorption peaks. This is consistent with the carboxymethylation of proteins occurring on nascent peptide chains. 相似文献
4.
Ilana Agmon Tamar Auerbach David Baram Heike Bartels Anat Bashan Rita Berisio Paola Fucini Harly A S Hansen Joerg Harms Maggie Kessler Moshe Peretz Frank Schluenzen Ada Yonath Raz Zarivach 《European journal of biochemistry》2003,270(12):2543-2556
High-resolution crystal structures of large ribosomal subunits from Deinococcus radiodurans complexed with tRNA-mimics indicate that precise substrate positioning, mandatory for efficient protein biosynthesis with no further conformational rearrangements, is governed by remote interactions of the tRNA helical features. Based on the peptidyl transferase center (PTC) architecture, on the placement of tRNA mimics, and on the existence of a two-fold related region consisting of about 180 nucleotides of the 23S RNA, we proposed a unified mechanism integrating peptide bond formation, A-to-P site translocation, and the entrance of the nascent protein into its exit tunnel. This mechanism implies sovereign, albeit correlated, motions of the tRNA termini and includes a spiral rotation of the A-site tRNA-3' end around a local two-fold rotation axis, identified within the PTC. PTC features, ensuring the precise orientation required for the A-site nucleophilic attack on the P-site carbonyl-carbon, guide these motions. Solvent mediated hydrogen transfer appears to facilitate peptide bond formation in conjunction with the spiral rotation. The detection of similar two-fold symmetry-related regions in all known structures of the large ribosomal subunit, indicate the universality of this mechanism, and emphasizes the significance of the ribosomal template for the precise alignment of the substrates as well as for accurate and efficient translocation. The symmetry-related region may also be involved in regulatory tasks, such as signal transmission between the ribosomal features facilitating the entrance and the release of the tRNA molecules. The protein exit tunnel is an additional feature that has a role in cellular regulation. We showed by crystallographic methods that this tunnel is capable of undergoing conformational oscillations and correlated the tunnel mobility with sequence discrimination, gating and intracellular regulation. 相似文献
5.
6.
7.
Structural basis of the ribosomal machinery for peptide bond formation,translocation, and nascent chain progression 总被引:9,自引:0,他引:9
Bashan A Agmon I Zarivach R Schluenzen F Harms J Berisio R Bartels H Franceschi F Auerbach T Hansen HA Kossoy E Kessler M Yonath A 《Molecular cell》2003,11(1):91-102
Crystal structures of tRNA mimics complexed with the large ribosomal subunit of Deinococcus radiodurans indicate that remote interactions determine the precise orientation of tRNA in the peptidyl-transferase center (PTC). The PTC tolerates various orientations of puromycin derivatives and its flexibility allows the conformational rearrangements required for peptide-bond formation. Sparsomycin binds to A2602 and alters the PTC conformation. H69, the intersubunit-bridge connecting the PTC and decoding site, may also participate in tRNA placement and translocation. A spiral rotation of the 3' end of the A-site tRNA around a 2-fold axis of symmetry identified within the PTC suggests a unified ribosomal machinery for peptide-bond formation, A-to-P-site translocation, and entrance of nascent proteins into the exit tunnel. Similar 2-fold related regions, detected in all known structures of large ribosomal subunits, indicate the universality of this mechanism. 相似文献
8.
During past five years there have been published many experimental data concerning structure and function of the ribosome. With the presentation of atomic structures we obtained a new data about composition of peptidyl transferase center. It is now obvious that PTC is composed entirely of rRNA. It is also known that the proper substrate alignment is the major factor for ribosome's catalytic activity. However, more detailed mechanism of peptide bond formation on the ribosome still remains unclear. Several issues remain unsolved. For example, are there any chemical components coming from ribosome itself, that enhance the rate of the reaction? Do intact ribosomes perform peptidyltransfer in the same way as the isolated ribosomal subunits that have been the source of most of the data? In this article we present different opinions and controversions around peptide bond formation on the ribosome. 相似文献
9.
The peptidyl transfer reaction catalyzed by the ribosome is a sophisticated product of evolution. The molecular mechanism of peptide bond formation has not been fully elucidated although the essential involvement of 23S rRNA has been established. The universal CCA sequence at the 3'-end of tRNA plays an important role in this process, by interacting with specific nucleotides in 23S rRNA. However, reconstitution of peptidyl transferase activity by a naked 23S rRNA (without the help of any of the ribosomal proteins) has not been reported. To investigate the possible evolutionary development of the peptidyl transfer reaction, we tried to obtain peptide bond formation using a piece of tRNA--an aminoacyl-minihelix--mixed with sequence-specific oligonucleotides that contained puromycin. This system reproduced conceptually the equivalent interactions between the CCA trinucleotide of tRNA and 23S rRNA. Peptide bond formation was detected by gel electrophoresis, TLC and mass spectrometry. These results have implications for the evolution of the peptidyl transfer reaction in biological system. 相似文献
10.
Optimization of enzyme-mediated peptide bond formation 总被引:1,自引:0,他引:1
Enzyme-catalyzed peptide bond formation requires thorough examination and optimization of each coupling step. In order to identify factors influencing the selectivity between aminolysis and hydrolysis, a systematic study was carried out for the kinetically controlled peptide synthesis. The reaction temperature, the type of C-terminal protecting group, and different organic cosolvents showed little influence on the selectivity. The enzyme, excess nucleophile, pH, N-terminal protecting group, and ionic strength of the solution were identified as major factors controlling the selectivity and, therefore, the yield of the dipeptide synthesis. Under optimized conditions, the selectivity of the chymotrypsin-catalyzed synthesis of PheSer could be increased from 35 to 100%. 相似文献
11.
Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs 总被引:1,自引:0,他引:1
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome. 相似文献
12.
The analysis of reactions involving amino acids esterified to tRNAs traditionally uses radiolabeled amino acids. We describe here an alternative assay involving [3'-32P]-labeled tRNA followed by nuclease digestion and TLC analysis that permits aminoacylation to be monitored in an efficient, quantitative manner while circumventing many of the problems faced when using radiolabeled amino acids. We also describe a similar assay using [3'-32P]-labeled aa-tRNAs to determine the rate of peptide bond formation on the ribosome. This type of assay can also potentially be adapted to study other reactions involving an amino acid or peptide esterified to tRNA. 相似文献
13.
Isomer A of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) is a substrate for tRNA nucleotidyltransferase from baker's yeast, whereas isomer B is a competitive inhibitor. The tRNA resulting from this reaction has a phosphorothioate instead of a phosphate diester linkage at the last internucleotidic linkage between cytidine and adenosine. On limited digestion of this tRNA with RNase A, one can isolate cytidine 2',3'-cyclic phosphorothioate which can be deaminated to uridine 2',3'-cyclic phosphorothioate. It can be shown that this compound is the endo isomer and that, therefore, the phosphorothioate diester bond in the tRNA must have had the R configuration. This result indicates that no racemization during the condensation of ATP alpha S, isomer A, onto the tRNA had occurred. Whether inversion or retention of configuration had taken place awaits elucidation of the absolute configuration of isomer A of ATP alpha S. 相似文献
14.
Trigger factor interacts with the signal peptide of nascent Tat substrates but does not play a critical role in Tat-mediated export. 总被引:1,自引:0,他引:1
Wouter S P Jong Corinne M ten Hagen-Jongman Pierre Genevaux Josef Brunner Bauke Oudega Joen Luirink 《European journal of biochemistry》2004,271(23-24):4779-4787
Twin-arginine translocation (Tat)-mediated protein transport across the bacterial cytoplasmic membrane occurs only after synthesis and folding of the substrate protein that contains a signal peptide with a characteristic twin-arginine motif. This implies that premature contact between the Tat signal peptide and the Tat translocon in the membrane must be prevented. We used site-specific photo-crosslinking to demonstrate that the signal peptide of nascent Tat proteins is in close proximity to the chaperone and peptidyl-prolyl isomerase trigger factor (TF). The contact with TF was strictly dependent on the context of the translating ribosome, started early in biogenesis when the nascent chain left the ribosome near L23, and persisted until the chain reached its full length. Despite this exclusive and prolonged contact, depletion or overexpression of TF had little effect on the kinetics and efficiency of the Tat export process. 相似文献
15.
Although the complex process of ribosome assembly in the nucleolus is beginning to be understood, little is known about how the ribosomal subunits move from the nucleolus to the nuclear membrane for transport to the cytoplasm. We show here that large ribosomal subunits move out from the nucleolus and into the nucleoplasm in all directions, with no evidence of concentrated movement along directed paths. Mobility was slowed compared with that expected in aqueous solution in a manner consistent with anomalous diffusion. Once nucleoplasmic, the subunits moved in the same random manner and also sometimes visited another nucleolus before leaving the nucleus. 相似文献
16.
1. In this study, a cell-free system derived from Escherichia coli has been used in order to examine in detail the effect of hyaluronic acid on peptide bond formation with the aid of puromycin reaction. 2. This reaction is activated by hyaluronic acid. 3. The degree of activation of peptide bond formation depends on the molecular size of hyaluronic acid. 4. The kinetic analysis revealed that the hyaluronic acid acts as a mixed-type nonessential activator. 5. The presence of hyaluronic acid improves about 9-fold the activity status of ternary complex as it can be calculated by k3/k5 ratio. 相似文献
17.
18.
19.
Peptide bond formation during ribosomal protein synthesis involves an aminolysis reaction between the aminoacyl α-amino group and the carbonyl ester of the growing peptide via a transition state with a developing negative charge, the oxyanion. Structural and molecular dynamic studies have suggested that the ribosome may stabilize the oxyanion in the transition state of peptide bond formation via a highly ordered water molecule. To biochemically investigate this mechanistic hypothesis, we estimated the energetic contribution to catalytic charge stabilization of the oxyanion using a series of transition state mimics that contain different charge distributions and hydrogen bond potential on the functional group mimicking the oxyanion. Inhibitors containing an oxyanion mimic that carried a neutral charge and a mimic that preserved the negative charge but could not form hydrogen bonds had less than a 3-fold effect on inhibitor binding affinity. These observations argue that the ribosome provides minimal transition state charge stabilization to the oxyanion during peptide bond formation via the water molecule. This is in contrast to the substantial level of oxyanion stabilization provided by serine proteases. This suggests that the oxyanion may be neutralized via a proton shuttle, resulting in an uncharged transition state. 相似文献
20.
Beringer M Bruell C Xiong L Pfister P Bieling P Katunin VI Mankin AS Böttger EC Rodnina MV 《The Journal of biological chemistry》2005,280(43):36065-36072
Peptide bond formation is the main catalytic function of the ribosome. The mechanism of catalysis is presumed to be highly conserved in all organisms. We tested the conservation by comparing mechanistic features of the peptidyl transfer reaction on ribosomes from Escherichia coli and the Gram-positive bacterium Mycobacterium smegmatis. In both cases, the major contribution to catalysis was the lowering of the activation entropy. The rate of peptide bond formation was pH independent with the natural substrate, amino-acyl-tRNA, but was slowed down 200-fold with decreasing pH when puromycin was used as a substrate analog. Mutation of the conserved base A2451 of 23 S rRNA to U did not abolish the pH dependence of the reaction with puromycin in M. smegmatis, suggesting that A2451 did not confer the pH dependence. However, the A2451U mutation alters the structure of the peptidyl transferase center and changes the pattern of pH-dependent rearrangements, as probed by chemical modification of 23 S rRNA. A2451 seems to function as a pivot point in ordering the structure of the peptidyl transferase center rather than taking part in chemical catalysis. 相似文献