首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cell-free system derived from Escherichia coli has been used in order to study the kinetics of inhibition of peptide bond formation with the aid of the puromycin reaction in solution. A similar study has been carried out earlier on a solid support matrix with the same inhibitors. We find that the overall pattern of the kinetics of inhibition is the same in the two systems. At low concentrations of inhibitor there is a competitive phase of inhibition, whereas at higher concentrations of inhibitor the type of inhibition becomes mixed noncompetitive. The values of Ki of the competitive phase in the system in solution are: 5.8 microM (amicetin), 0.2 microM (blasticidin S), 0.5 microM (chloramphenicol), and 0.5 microM (tevenel). The inhibitors amicetin, blasticidin S, and tevenel interact with the ribosome in a reaction which is slower than that of the substrate puromycin, showing clear-cut characteristics of slow-onset inhibition in both systems. Chloramphenicol, on the other hand does not easily show such a delay in solution. It interacts with the ribosome relatively faster than the other three antibiotics. Despite this, chloramphenicol too shows characteristics of time-dependent inhibition.  相似文献   

2.
1. A cell-free system derived from E. coli has been used in this study. The process of peptide bond formation was assessed with the aid of the puromycin reaction, which is catalyzed by peptidyltransferase. 2. This reaction is inhibited by heparin, in contrast, this reaction is activated by hyaluronic acid. 3. The presence of heparin decreases the percentage of formed initiation complex (complex C), but hyaluronic acid, chondroitin sulphate and keratan sulphate have no effect on the formation of complex C. 4. From other types of glycosaminoglycans, only hyaluronic acid increases the stability of active complex C.  相似文献   

3.
Protein carboxymethylase from bovine anterior pituitary is found to be capable of carboxymethylating proteins in an in vitro protein synthesizing system which includes S-adenosyl-L-methionine-[14C methyl], wheat germ ribosomes and oviduct mRNA. Optimal carboxymethylation is inhibited by puromycin indicating the requirement for de novo protein synthesis. Ultracentrifugal profiles show that carboxymethylated proteins are associated with ribosomal absorption peaks. This is consistent with the carboxymethylation of proteins occurring on nascent peptide chains.  相似文献   

4.
The aim of the present study was to investigate homoharringtonine alkaloid effect on: (i) the nonenzymatic and eEF-1-dependent Phe-tRNAPhe binding to poly(U)-programmed human placenta 80 S ribosomes; (ii) diphenylalanine synthesis accompanying nonenzymatic Phe-tRNAPhe binding; and (iii) acetylphenylalanyl-puromycin formation. Neither nonenzymatic nor eEF-1-dependent Phe-tRNAPhe binding were noticeably affected by the alkaloid, whereas diphenylalanine synthesis and puromycin reaction were strongly inhibited by homoharringtonine. It has been proposed that the site of homoharringtonine binding on 80 S ribosomes should overlap or coincide with the acceptor site of the ribosome.  相似文献   

5.
High-resolution crystal structures of large ribosomal subunits from Deinococcus radiodurans complexed with tRNA-mimics indicate that precise substrate positioning, mandatory for efficient protein biosynthesis with no further conformational rearrangements, is governed by remote interactions of the tRNA helical features. Based on the peptidyl transferase center (PTC) architecture, on the placement of tRNA mimics, and on the existence of a two-fold related region consisting of about 180 nucleotides of the 23S RNA, we proposed a unified mechanism integrating peptide bond formation, A-to-P site translocation, and the entrance of the nascent protein into its exit tunnel. This mechanism implies sovereign, albeit correlated, motions of the tRNA termini and includes a spiral rotation of the A-site tRNA-3' end around a local two-fold rotation axis, identified within the PTC. PTC features, ensuring the precise orientation required for the A-site nucleophilic attack on the P-site carbonyl-carbon, guide these motions. Solvent mediated hydrogen transfer appears to facilitate peptide bond formation in conjunction with the spiral rotation. The detection of similar two-fold symmetry-related regions in all known structures of the large ribosomal subunit, indicate the universality of this mechanism, and emphasizes the significance of the ribosomal template for the precise alignment of the substrates as well as for accurate and efficient translocation. The symmetry-related region may also be involved in regulatory tasks, such as signal transmission between the ribosomal features facilitating the entrance and the release of the tRNA molecules. The protein exit tunnel is an additional feature that has a role in cellular regulation. We showed by crystallographic methods that this tunnel is capable of undergoing conformational oscillations and correlated the tunnel mobility with sequence discrimination, gating and intracellular regulation.  相似文献   

6.
3H-puromycin binds to bacterial ribosomes, in the presence of ethanol, under the experimental conditions of the fragment reaction assay. The binding is feeble, takes place at 0°C, is partially inhibited by chloramphenicol and lincomycin and totally by sparsomycin. 3H-puromycin binding is hardly affected by the 3 aminonucleoside of puromycin, is well inhibited by the L-Phenylalanine and L-Leucine analogues of puromycin and totally blocked by L-Phenylalanyl-adenosine.  相似文献   

7.
8.
9.
Crystal structures of tRNA mimics complexed with the large ribosomal subunit of Deinococcus radiodurans indicate that remote interactions determine the precise orientation of tRNA in the peptidyl-transferase center (PTC). The PTC tolerates various orientations of puromycin derivatives and its flexibility allows the conformational rearrangements required for peptide-bond formation. Sparsomycin binds to A2602 and alters the PTC conformation. H69, the intersubunit-bridge connecting the PTC and decoding site, may also participate in tRNA placement and translocation. A spiral rotation of the 3' end of the A-site tRNA around a 2-fold axis of symmetry identified within the PTC suggests a unified ribosomal machinery for peptide-bond formation, A-to-P-site translocation, and entrance of nascent proteins into the exit tunnel. Similar 2-fold related regions, detected in all known structures of large ribosomal subunits, indicate the universality of this mechanism.  相似文献   

10.
During past five years there have been published many experimental data concerning structure and function of the ribosome. With the presentation of atomic structures we obtained a new data about composition of peptidyl transferase center. It is now obvious that PTC is composed entirely of rRNA. It is also known that the proper substrate alignment is the major factor for ribosome's catalytic activity. However, more detailed mechanism of peptide bond formation on the ribosome still remains unclear. Several issues remain unsolved. For example, are there any chemical components coming from ribosome itself, that enhance the rate of the reaction? Do intact ribosomes perform peptidyltransfer in the same way as the isolated ribosomal subunits that have been the source of most of the data? In this article we present different opinions and controversions around peptide bond formation on the ribosome.  相似文献   

11.
Peptide bond formation is the fundamental reaction of ribosomal protein synthesis. The ribosome's active site--the peptidyl transferase center--is composed of rRNA, and thus the ribosome is the largest known RNA catalyst. The ribosome accelerates peptide bond formation by 10(7)-fold relative to the uncatalyzed reaction. Recent progress of structural, biochemical and computational approaches has provided a fairly detailed picture of the catalytic mechanisms employed by the ribosome. Energetically, catalysis is entirely entropic, indicating an important role of solvent reorganization, substrate positioning, and/or orientation of the reacting groups within the active site. The ribosome provides a pre-organized network of electrostatic interactions that stabilize the transition state and facilitate proton shuttling involving ribose hydroxyl groups of tRNA. The catalytic mechanism employed by the ribosome suggests how ancient RNA-world enzymes may have functioned.  相似文献   

12.
13.
The peptidyl transfer reaction catalyzed by the ribosome is a sophisticated product of evolution. The molecular mechanism of peptide bond formation has not been fully elucidated although the essential involvement of 23S rRNA has been established. The universal CCA sequence at the 3'-end of tRNA plays an important role in this process, by interacting with specific nucleotides in 23S rRNA. However, reconstitution of peptidyl transferase activity by a naked 23S rRNA (without the help of any of the ribosomal proteins) has not been reported. To investigate the possible evolutionary development of the peptidyl transfer reaction, we tried to obtain peptide bond formation using a piece of tRNA--an aminoacyl-minihelix--mixed with sequence-specific oligonucleotides that contained puromycin. This system reproduced conceptually the equivalent interactions between the CCA trinucleotide of tRNA and 23S rRNA. Peptide bond formation was detected by gel electrophoresis, TLC and mass spectrometry. These results have implications for the evolution of the peptidyl transfer reaction in biological system.  相似文献   

14.
Optimization of enzyme-mediated peptide bond formation   总被引:1,自引:0,他引:1  
Enzyme-catalyzed peptide bond formation requires thorough examination and optimization of each coupling step. In order to identify factors influencing the selectivity between aminolysis and hydrolysis, a systematic study was carried out for the kinetically controlled peptide synthesis. The reaction temperature, the type of C-terminal protecting group, and different organic cosolvents showed little influence on the selectivity. The enzyme, excess nucleophile, pH, N-terminal protecting group, and ionic strength of the solution were identified as major factors controlling the selectivity and, therefore, the yield of the dipeptide synthesis. Under optimized conditions, the selectivity of the chymotrypsin-catalyzed synthesis of PheSer could be increased from 35 to 100%.  相似文献   

15.
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.  相似文献   

16.
Isomer A of adenosine 5'-O-(1-thiotriphosphate) (ATP alpha S) is a substrate for tRNA nucleotidyltransferase from baker's yeast, whereas isomer B is a competitive inhibitor. The tRNA resulting from this reaction has a phosphorothioate instead of a phosphate diester linkage at the last internucleotidic linkage between cytidine and adenosine. On limited digestion of this tRNA with RNase A, one can isolate cytidine 2',3'-cyclic phosphorothioate which can be deaminated to uridine 2',3'-cyclic phosphorothioate. It can be shown that this compound is the endo isomer and that, therefore, the phosphorothioate diester bond in the tRNA must have had the R configuration. This result indicates that no racemization during the condensation of ATP alpha S, isomer A, onto the tRNA had occurred. Whether inversion or retention of configuration had taken place awaits elucidation of the absolute configuration of isomer A of ATP alpha S.  相似文献   

17.
The analysis of reactions involving amino acids esterified to tRNAs traditionally uses radiolabeled amino acids. We describe here an alternative assay involving [3'-32P]-labeled tRNA followed by nuclease digestion and TLC analysis that permits aminoacylation to be monitored in an efficient, quantitative manner while circumventing many of the problems faced when using radiolabeled amino acids. We also describe a similar assay using [3'-32P]-labeled aa-tRNAs to determine the rate of peptide bond formation on the ribosome. This type of assay can also potentially be adapted to study other reactions involving an amino acid or peptide esterified to tRNA.  相似文献   

18.
Trigger factor (TF) is the first protein-folding chaperone to interact with a nascent peptide chain as it emerges from the ribosome. Here, we have used a spin down assay to estimate the affinities for the binding of TF to ribosome nascent chain complexes (RNCs) with peptides of varying lengths and sequences. An in vitro system for protein synthesis assembled from purified Escherichia coli components was used to produce RNCs stalled on truncated mRNAs. The affinity of TF to RNCs exposing RNA polymerase sequences increased with the length of the nascent peptides. TF bound to RNA polymerase RNCs with significantly higher affinity than to inner membrane protein leader peptidase and bacterioopsin RNCs. The latter two RNCs are substrates for signal recognition particle, suggesting complementary affinities of TF and signal recognition particle to nascent peptides targeted for cytoplasm and membrane.  相似文献   

19.
We have studied the non-enzymic binding of phe-tRNA to ribosomes from rat liver using deacylated tRNA to inhibit binding to the P-site and puromycin (5 x 10-minus3M) to inhibit binding to the A-site. We conclude that at a low concentration of magnesium ions (10mM) phe-tRNA is bound only at the A-site of 80S irbosomes, whereas at a high concentration of magnesium ions (40mM) phe-tRNA is also bound at the P-site. Studies with edeine indicate that, during non-enzymic binding of phe-tRNA, eukaryotic ribosomes (in contrast to prokarotic ribosomes) have the A-site of the 60S subunit and the initiation site of the 40S subunit juxtaposed. This may account for the differences observed, in formation of diphenylalanyl-tRNA and phenylalanyl-puromycin, between phe-tRNA bound non-enzymically to the P-sites of eukaryotic and prokaryotic ribosomes.  相似文献   

20.
Twin-arginine translocation (Tat)-mediated protein transport across the bacterial cytoplasmic membrane occurs only after synthesis and folding of the substrate protein that contains a signal peptide with a characteristic twin-arginine motif. This implies that premature contact between the Tat signal peptide and the Tat translocon in the membrane must be prevented. We used site-specific photo-crosslinking to demonstrate that the signal peptide of nascent Tat proteins is in close proximity to the chaperone and peptidyl-prolyl isomerase trigger factor (TF). The contact with TF was strictly dependent on the context of the translating ribosome, started early in biogenesis when the nascent chain left the ribosome near L23, and persisted until the chain reached its full length. Despite this exclusive and prolonged contact, depletion or overexpression of TF had little effect on the kinetics and efficiency of the Tat export process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号