首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In common with other Apicomplexan parasites, Plasmodium falciparum carries two extrachromosomal DNAs, one of which, the 6 kb element, is undoubtedly mitochondrial. The second, generally referred to as the 35 kb circle, is of unknown provenance, but the nature and organization of its genetic content makes a mitochondrial association unlikely and the molecule has features reminiscent of plastid genomes. We now report the occurrence on the circle of an open reading frame specifying a predicted 470 amino acid protein that shares more than 50% identity with a gene currently known only on the plastome of red algae. This high degree of conservation confirms the 35 kb circle's plastid ancestry, and we speculate that it may have originated from the rhodoplast of an ancient red algal endosymbiont in the progenitor of the Apicomplexa.  相似文献   

2.
3.
Besides their mitochondrial genome, malarial parasites contain a second organellar DNA. This 35 kb circular molecule has a number of features reminiscent of plastid DNAs. Sequence analysis shows that along with other genes the circle codes for 25 different tRNAs all of which are transcribed. Six of the tRNAs have some unusual features, and one has an intron, the only one found so far on the circle. Comparison of codon and anticodon usage indicates that the 25 tRNAs are sufficient to decode all the protein genes present on the circle. The maintenance of such a parsimonious but complete translation system is further evidence for the functionality of the circle.  相似文献   

4.
A soybean shoot cDNA expression library was screened with polyclonal antibodies raised against red beet complex I and several clones were identified. One clone, consisting of a 1 kb insert, was fully sequenced. The sequence of 1025 bp was found to contain two extended open reading frames and the proteins encoded were identified as the ndhK and ndhJ products of the chloroplast genome. Nuclear, mitochondrial and chloroplast DNA was isolated and probed with a ndhK-specific probe. The chloroplast DNA contained a single copy of the cloned insert. With nuclear DNA, positively hybridising bands of 1.2, 2.7 and 3.2 kb were observed indicating that at least one gene homologous to ndhK of the chloroplast genome, is also present in the nucleus. The mitochondrial DNA did not hybridise with the ndhK probe. Western analysis of thylakoid proteins with the mitochondrial complex I antibodies revealed several bands. It is suggested that soybean contains two copies of the ndhK gene, one, on the plastid genome, coding for a subunit of a chloroplast NAD(P)H dehydrogenase, and the other, in the nucleus, coding for a subunit of mitochondrial complex I.  相似文献   

5.
A physical restriction map of the mitochondrial genome from one clone (TCC 854) of the sexually isolated populations (syngens) of the morphologically uniform species Pandorina morum Bory has been constructed using restriction endonucleases Ava I, Bam HI, Bgl II, Eco RI, Kpn I, and Pst I. The 20 kb linear genome can easily be separated from plastid DNA, nuclear satellite rDNA, and main band (nuclear) DNA on a Hoechst/CsCl buoyant density gradient. The Pandorina mitochondrial DNA shows sufficient similarity to the 16 kb mitochondrial genome of Chlamydomonas reinhardtii to cross-hybridize, and also hybridizes with a probe containing maize mitochondrial 18S rRNA genes. Double digests, self-probing, and Bal31 exonuclease experiments suggest that 1.8 to 3.3 kb of sequence is repeated at each end of the genome as an inverted repeat. Mitochondrial genome sizes of other P. morum syngens were found to range from ca. 20 to ca. 38 kb. The mitochondrial genome should be valuable for taxonomic studies; it can be used for comparative organellar studies; and it should be of interest to compare with that of other plant and animal mitochondrial genomes.  相似文献   

6.
The malaria parasite Plasmodium falciparum carries an extrachromosomal 35 kb circular DNA molecule of unknown provenance. A striking feature of the circle is a palindromic sequence of genes for subunit rRNAs and several tRNAs, spanning ca. 10.5 kb. The palindrome has an intriguing resemblance to the inverted repeat of plastid genomes, and the sequence and putative secondary structure of the malarial large subunit (LSU) rRNA described in this report were used as the basis of a phylogenetic study. The malarial rRNA was found to be highly divergent in comparison with a selected group of chloroplast LSU rRNAs but was more closely related to them than to mitochondrial LSU rRNA genes.  相似文献   

7.
Summary The mitochondrial DNA (mtDNA) from the cultured cells of a cytoplasmic male-sterile line (A-58CMS) of rice (Oryza sativa) was cloned and its physical map was constructed. There was structural alteration on the mitochondrial genome during the cell culture. Detailed restriction analysis of cosmid clones having mtDNA fragments suggested either that the master genome has a 100-kb duplication (the genome size becomes 450 kb) or that a master circle is not present in the genome (the net structural complexity becomes 350 kb). The physical map of plant mitochondrial genomes thus far reported is illustrated in a single circle, namely a master circle. However, no circular DNA molecule corresponding to a master circle has yet been proved. In the present report, representation of plant mitochondrial genomes and a possibility for mitochondrial genome without a master circle are discussed.  相似文献   

8.
9.
Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell‐cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.  相似文献   

10.
We sequenced to completion the circular plastid genome of the red alga Gracilaria tenuistipitata var. liui. This is the first plastid genome sequence from the subclass Florideophycidae (Rhodophyta). The genome is composed of 183,883 bp and contains 238 predicted genes, including a single copy of the ribosomal RNA operon. Comparisons with the plastid genome of Porphyra pupurea reveal strong conservation of gene content and order, but we found major genomic rearrangements and the presence of coding regions that are specific to Gracilaria. Phylogenetic analysis of a data set of 41 concatenated proteins from 23 plastid and two cyanobacterial genomes support red algal plastid monophyly and a specific evolutionary relationship between the Florideophycidae and the Bangiales. Gracilaria maintains a surprisingly ancient gene content in its plastid genome and, together with other Rhodophyta, contains the most complete repertoire of plastid genes known in photosynthetic eukaryotes.Supplementary material () is available for this article.[Reviewing Editor: Dr. W. Ford Doolittle]  相似文献   

11.
12.
An actively transcribed gene (glsF) encoding for ferredoxin-dependent glutamate synthase (Fd-GOGAT) was found on the plastid genome of the multicellular red alga Antithamnion sp. Fd-GOGAT is not plastid-encoded in chlorophytic plants, demonstrating that red algal plastid genomes encode for additional functions when compared to those known from green chloroplasts. Moreover, our results suggest that the plant Fd-GOGAT has an endosymbiotic origin. The same may not be true for NADPH-dependent GOGAT. In Antithamnion glsF is flanked upstream by cpcBA and downstream by psaC and is transcribed monocistronically. Implications of these results for the evolution of GOGAT enzymes and the plastid genome are discussed.  相似文献   

13.
We have cloned and sequenced an area of about 9.0 kb of the plastid DNA (ptDNA) from the holoparasitic flowering plant Cuscuta reflexa to investigate the evolutionary response of plastid genes to a reduced selective pressure. The region contains genes for the 16S rRNA, a subunit of a plastid NAD(P)H dehydrogenase (ndhB), three transfer RNAs (trnA, trnI, trnV) as well as the gene coding for the ribosomal protein S7 (rps7). While the other genes are strongly conserved in C. reflexa, the ndhB gene is a pseudogene due to many frameshift mutations. In addition we used heterologous gene probes to identify the other ndh genes encoded by the plastid genome in higher plants. No hybridization signals could be obtained, suggesting that these genes are either lost or strongly altered in the ptDNA of C. reflexa. Together with evidence of deleted genes in the ptDNA of C. reflexa, the plastid genome can be grouped into four classes reflecting a different evolutionary rate in each case. The phylogenetic position of Cuscuta and the significance of ndh genes in the plastid genome of higher plants are discussed.  相似文献   

14.
Summary Part of the plastid rRNA cistron is present in the mitochondrial genome of Oenothera. This sequence of 2081 nucleotides contains the 3 half of the plastid 23 S rRNA, the adjacent intergenic region and the 4.5 S rRNA. Secondary intramitochondrial sequence rearrangements involve this region of plastid origin and the gene encoding the putative mitochondrial small ribosomal protein S13. Sequence comparison suggests that the interorganellar transfer event occurred a long time ago. The mitochondrial sequence contains regions more homologous to the plastid DNA from tobacco than from Oenothera itself in the regions analysed, suggesting faster sequence evolution in plastids than in mitochondria of Oenothera.  相似文献   

15.
We have characterized a second nuclear gene (tufM) in Arabidopsis thaliana that encodes a eubacterial-like protein synthesis elongation factor Tu (EF-Tu). This gene does not closely resemble the previously described Arabidopsis nuclear tufA gene, which encodes the plastid EF-Tu, and does not contain sequence elements found in all cyanobacterial and plastid tufA genes. However, the predicted amino acid sequence includes an N-terminal extension which resembles an organellar targeting sequence and shares three unique sequence elements with mitochondrial EF-Tu's, from Saccharomyces cerevisiae and Homo sapiens, suggesting that this gene encodes the Arabidopsis mitochondrial EF-Tu. Consistent with this interpretation, the gene is expressed at a higher level in flowers than in leaves. Phylogenetic analysis confirms the mitochondrial character of the sequence and indicates that the human, yeast, and Arabidopsis tufM genes have undergone considerably more sequence divergence than their cytoplasmic counterparts, perhaps reflecting a cross-compartmental acceleration of gene evolution for components of the mitochondrial translation apparatus. As previously observed for tufA, the tufM gene is present in one copy in Arabidopsis but in several copies in other species of crucifers.  相似文献   

16.
We have used heterologous probes to investigate the degree of sequence conservation in the plastid genome ofConopholis americana, a totally achlorophyllous angiosperm which exists as a root parasite on red oaks. AlthoughConopholis is completely nonphotosynthetic, it retains a plastid genome in which certain regions, including that which contains the ribosomal RNA genes, are highly conserved. Other regions, including those containing the genes for numerous photosynthesis proteins, are either absent or highly divergent. We also find that the 16S and 23S ribosomal genes of theConopholis plastid are transcribed and processed, implying a potentially functional genetic apparatus. These results are in agreement with findings reported recently for a related root parasite,Epifagus virginiana (de Pamphilis and Palmer, 1990). Furthermore, the plastid genome is maintained in high copy number in fruit tissue, whereas mature seeds have an approximately 10-fold lower copy number.  相似文献   

17.
Plastid and mitochondrial DNAs from suspension cultures of Daucus carota subsp. sativus cv. Danvers, D. carota subsp. gummifer, D. capillifolius, and D. pusillus were compared by restriction endonuclease fragment analysis. Organelles isolated from protoplasts of suspension cultures were purified using a one-step sucrose gradient. Plastid DNA fragment patterns for subsp. sativus, subsp. gummifer, and capillifolius were indistinguishable in Pstl, SalI and XhoI enzyme digests. No variation was detected in BamHI or HindIII digests between subsp. sativus and capillifolius. Pusillus plastid DNA varied significantly when compared to the other Daucus cultures. The size of the plastid genome of each species as determined by fragment addition, was estimated at 155 kb. Restriction digests of the mitochondrial DNAs generated a large number of fragments which when totaled established a size of 386–468 kb for the genomes. Densitometer scans of the fragment patterns indicate the bands were present in variable stoichiometry. Up to 26% of the fragments generated by PstI, SalI and HindIII digests were homologous in size among the four mitochondrial genomes. A further comparison of mitochondrial fragments indicated a closer homology of subsp. sativus to capillifolius than to subsp. gummifer or pusillus as was also found with the plastid genomes.  相似文献   

18.
Pairwise comparison of whole plastid and draft nuclear genomic sequences of Arabidopsis thaliana and Oryza sativa L. ssp. indica shows that rice nuclear genomic sequences contain homologs of plastid DNA covering about 94 kb (83%) of plastid genome and including one or more full-length intact (without mutations resulting in premature stop codons) homologues of 26 known protein-coding (KPC) plastid genes. By contrast, only about 20 kb (16%) of chloroplast DNA, including a single intact plastid-derived KPC gene, is presented in the nucleus of A. thaliana. Sixteen rice plastid genes have at least one nuclear copy without any mutation or with only synonymous substitutions. Nuclear copies for other ten plastid genes contain both synonymous and non-synonymous substitutions. Multiple ESTs for 25 out of 26 KPC genes were also found, as well as putative promoters for some of them. The study of substitutions pattern shows that some of nuclear homologues of plastid genes may be functional and/or are under the pressure of the positive natural selection. The similar comparative analysis performed on rice chromosome 1 revealed 27 contigs containing plastid-derived sequences, totalling about 84 kb and covering two thirds of chloroplast DNA, with the intact nuclear copies of 26 different KPC genes. One of these contigs, AP003280, includes almost 57 kb (45%) of chloroplast genome with the intact copies of 22 KPC genes. At the same time, we observed that relative locations of homologues in plastid DNA and the nuclear genome are significantly different.  相似文献   

19.
Summary Partial sequence analysis of the plastid DNA (ptDNA) from a red alga, Antithamnion sp., revealed the presence of a homologue to the Escherichia coli SecA gene as well as two open reading frames (ORF 510, ORF 179). In addition a sec Y homologue has been detected on the plastid genome by heterologous hybridization. None of these genes has been found in completely sequenced chlorophytic plastid genomes. SecA and secY gene copies were also detected in the ptDNA of a chromophytic alga, indicating that secAY may be ubiquitous in rhodophytes and chromophytes. The significance of these findings for the evolution of plastid genomes and the thylakoid protein import mechanism is discussed.  相似文献   

20.
The plastid DNA of higher plants contains eleven reading frames that are homologous to subunits of the mitochondrial NADH-ubiquinone oxidoreductase (complex I). The genes are expressed, but a plastid NAD(P)H dehydrogenase has not yet been isolated and the function of the enzyme in plastid metabolism is unknown. Cyanobacteria also contain a NADH dehydrogenase that is homologous to the mitochondrial complex I. The enzyme is sensitive to rotenone and is located on the cytoplasmic and the thylakoid membrane. We report here the sequence of five subunits (ndhA, -I, G, -E and -D) of the NADH dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC6803. As in plastid DNA, the genes ndh(A-I-G-E) are clustered and probably constitute an operon. The ndhD gene is associated with a gene encoding an iron-sulphur protein of photosystem I (psaC) as in plastid DNA. In contrast to the situation in plastids, psaC and ndhD are not cotranscribed but transcribed from opposite strands. The deduced amino acid sequence of the cyanobacterial polypeptides is more similar to the corresponding plastid (40-68% identity) than to the corresponding mitochondrial subunits (17-39% identity). Thus, the cyanobacterial NADH-dehydrogenase provides a prokaryotic model system which is more suitable to genetic analysis than the enzyme of plastids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号