首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Atp12p protein of Saccharomyces cerevisiae is required for the assembly of the F(1) component of the mitochondrial F(1)F(0) ATP synthase. In this report, we show that the F(1) alpha-subunit co-precipitates and co-purifies with a tagged form of Atp12p adsorbed to affinity resins. Moreover, sedimentation analysis indicates that in the presence of the F(1) alpha-subunit, Atp12p behaves as a particle of higher mass than is observed in the absence of the alpha-subunit. Yeast two-hybrid screens confirm the direct association of Atp12p with the alpha-subunit and indicate that the binding site for the assembly factor lies in the nucleotide-binding domain of the alpha-subunit, between Asp133 and Leu322. These studies provide the basis for a model of F(1) assembly in which Atp12p is released from the alpha-subunit in exchange for a beta-subunit to form the interface that contains the non-catalytic adenine nucleotide-binding site.  相似文献   

2.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria.  相似文献   

3.
It is known that the negatively stained preparations of inner mitochondrial membrane display characteristic ∼9 nmF 1 (ATPase) knobs projecting from the matrix surface. Freeze-etch studies have reported the absence of such knobs from the “etched” surface of the inner mitochondrial membranes. We have demonstrated their presence on the surface of SMP (submitochondrial particles) prepared by freeze-drying for transmission electron microscopy. This identification has been substantiated by comparison with the freeze-dried TU particles (trypsin-urea treated SMP) that are devoid ofF 1 (ATPase). It has been suggested that a layer of water molecules is strongly adsorbed to the surface of SMP and does not sublime during normal freeze-“etching.”  相似文献   

4.
5.
It is known that the negatively stained preparations of inner mitochondrial membrane display characteristic approximately 9 nm F1 (ATPase) knobs projecting from the matrix surface. Freeze-etch studies have reported the absence of such knobs from the "etched" surface of the inner mitochondrial membranes. We have demonstrated their presence on the surface of SMP (submitochondrial particles) prepared by freeze-drying for transmission electron microscopy. This identification has been substantiated by comparison with freeze-dried TU particles (trypsin-urea treated SMP) that are devoid of F1 (ATPase). It has been suggested that a layer of water molecules is strongly adsorbed to the surface of SMP and does not sublime during normal freeze-"etching."  相似文献   

6.
7.
8.
The need for methods to identify disease biomarkers is underscored by the survival-rate of patients diagnosed at early stages of cancer progression. Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) is a novel approach to biomarker discovery that combines two powerful techniques: chromatography and mass spectrometry. One of the key features of SELDI-TOF MS is its ability to provide a rapid protein expression profile from a variety of biological and clinical samples. It has been used for biomarker identification as well as the study of protein-protein, and protein-DNA interaction. The versatility of SELDI-TOF MS has allowed its use in projects ranging from the identification of potential diagnostic markers for prostate, bladder, breast, and ovarian cancers and Alzheimer's disease, to the study of biomolecular interactions and the characterization of posttranslational modifications. In this minireview we discuss the application of SELDI-TOF MS to protein biomarker discovery and profiling.  相似文献   

9.
Hack E  Leaver CJ 《The EMBO journal》1983,2(10):1783-1789
The F1-ATPase complex has been purified from maize (Zea mays L.) mitochondria and shown to consist of five subunits with mol. wts. of 58 000 (α), 56 000 (β), 35 000 (γ), 22 000 (δ) and 8000 (ε). The α-subunit co-migrates on one- and two- dimensional isoelectric focussing-SDS polyacrylamide gels with the major polypeptide synthesised by isolated mitochondria. One-dimensional proteolytic peptide mapping and immunoprecipitation confirms that the α-subunit is a mitochondrial translation product and therefore presumably encoded in mitochondrial DNA. This contrasts with the situation in animal and fungal cells where all five subunits of the F1-ATPase are encoded by the nuclear genome and synthesised on cytosolic ribosomes.  相似文献   

10.
Binding of ADP to beef-heart mitochondrial ATPase (F1)   总被引:1,自引:0,他引:1  
1. ADP binding to beef-heart mitochondrial ATPase (F1), in the absence of Mg2+, has been determined by separating the free ligand by ultrafiltration and determining it in the filtrate by a specially modified isotachophoretic procedure. 2. Since during the binding experiments the 'tightly' bound ADP (but not the ATP) dissociates, it is necessary to take this into account in calculating the binding parameters. 3. The binding data show that only one tight binding site (Kd about 0.5 microM) for ADP is present. 4. It is not possible to calculate from the binding data alone the number of or the dissociation constants for the weak binding sites. It can be concluded, however, that the latter is not less than about 50 microM.  相似文献   

11.
1. When irradiated 8-azido-ATP becomes covalently bound (as the nitreno compound) to beef-heart mitochondrial ATPase (F1) as the triphosphate, either in the absence or presence of Mg2+, label covalently bound is not hydrolysed. 2. In the presence of Mg2+ the nitreno-ATP is bound to both the alpha and beta subunits, mainly (63%) to the alpha subunits. 3. After successive photolabelling of F1 with 8-azido-ATP (no Mg2+) and 8-azido-ADP (with Mg2+) 4 mol label is bound to F1, 2 mol to the alpha and 2 mol to the beta subunits. 4. When the order of photolabelling is reversed, much less 8-nitreno-ATP is bound to F1 previously labelled with 8-nitreno-ADP. It is concluded that binding to the alpha-subunits hinders binding to the beta subunits. 5. F1 that has been photolabelled with up to 4 mol label still contains 2 mol firmly bound adenine nucleotides per mol F1. 6. It is concluded that at least 6 sites for adenine nucleotides are present in isolated F1.  相似文献   

12.
1. Isolated F1 contains 14.9% N, indicating the presence of at least 8% non-protein material. The Lowry method, standardized with bovine serum albumin, correctly measures the protein content. 2. An extinction coefficient of 28.5 mM-1.cm-1 at 367.5 nm was found for aurovertin D in ethanol. 3. The fluorescence enhancement of aurovertin bound to F1 at pH 7.5 was found to be more than 100-fold. 4. Binding parameters calculated from the fluorescence enhancement with fixed F1 and variable aurovertin concentrations, and vice versa, indicate two binding sites per F1 molecule. 5. The fluorescence data are not readily interpreted on the basis of successive binding of aurovertin by 3-component binding reactions of the form E + A in equilibrium EA, but fit closely a model of two non-interacting sites binding aurovertin in a 4-component reaction, EF + A in equilibrium EA + F, with an equilibrium constant of about 2.  相似文献   

13.
14.
F1-ATPase was treated so that it contained three tightly bound nucleotides per molecule. One of these was bound at a catalytic site and was rapidly exchangeable, the two remaining nucleotides were nonexchangeable. Incubation of this preparation with ADP in the presence of Mg2+ results in 40-45% inhibition of the ATPase activity. With 2-azido-ADP instead of ADP, the ligand was covalently bound to F1 by illumination, in the presence or absence of turnover of the enzyme, and the site of binding was determined. In this way, one site could be identified, which induces the inhibition. The attachment of the covalently bound 2-nitreno-ADP is at Tyr-368 of a beta-subunit, characterized in the literature as a non-catalytic site. A second, non-catalytic site also binds 2-azido-ADP, but this binding is partially reversed by the addition of ATP and does not cause further inhibition of the ATPase activity. It is concluded that the slowly exchangeable non-catalytic site is the site of inhibition by ADP.  相似文献   

15.
16.
Mitochondria prepared from the yeast nuclear pet mutant N9-84 lack a detectable F1-ATPase activity. Genetic complementation of this mutant with a pool of yeast genomic DNA in the yeast Escherichia coli shuttle vector YEp13 restored its growth on a nonfermentable carbon source. Mitochondria prepared from the transformed host contained an 8-fold higher than normal level of the F1 alpha-subunit and restored ATPase activity to 50% that of the wild-type strain. Deletion and nucleotide sequence analysis of the complementing DNA on the plasmid revealed a coding sequence designated ATP1 for a protein of 544 amino acids which exhibits 60 and 54% direct protein sequence homology with the proton-translocating ATPase alpha-subunits from tobacco chloroplast and E. coli, respectively. In vitro expression and mitochondrial import experiments using this ATP1 sequence showed that additional amino-terminal sequences not present in the comparable plant and bacterial subunits function as transient sequences for import.  相似文献   

17.
18.
Recent studies on the IF(1) inhibitor protein of the mitochondrial F(1)F(0)-ATPase from molecular biochemistry to possible pathophysiological roles are reviewed. The apparent mechanism of IF(1) inhibition of F(1)F(0)-ATPase activity and the biophysical conditions that influence IF(1) activity are summarized. The amino acid sequences of human, bovine, rat and murine IF(1) are compared and domains and residues implicated in IF(1) function examined. Defining the minimal inhibitory sequence of IF(1) and the role of conserved histidines and conformational changes using peptides or recombinant IF(1) is reviewed. Luft's disease, a mitochondrial myopathy where IF(1) is absent, is described with respect to IF(1) relevance to mitochondrial bioenergetics and clinical observations. The possible pathophysiological role of IF(1) in conserving ATP under conditions where cells experience oxygen deprivation (tumor growth, myocardial ischemia) is evaluated. Finally, studies attempting to correlate IF(1) activity to ATP conservation in myocardial ischemic preconditioning are compared.  相似文献   

19.
An oxyanion-translocating ATPase encoded by a bacterial plasmid confers resistance to antiomonials and arsenicals in Escherichia coli by extrusion of the toxic oxyanions from the cytosol. The anion pump is composed of two polypeptides, the ArsA and ArsB proteins. Purified ArsA protein is an oxyanion-stimulated ATPase with two nucleotide-binding consensus sequences, one in the N-terminal half and one in the C-terminal half of the protein. The ArsA protein can be labeled with [alpha-32P]ATP by a UV-catalyzed reaction. Previously reported mutations in the N-terminal site abolish photoadduct formation. Using site-directed mutagenesis the glycine-rich region of the C-terminal putative nucleotide-binding sequence was altered. Three C-terminal site mutant proteins (GR337, KE340, KN340) were analyzed, as well as one additional N-terminal mutant protein (KE21). Strains bearing the mutated plasmids were arsenite sensitive to varying degrees. The purified ArsA protein from mutant KE340 retained approximately 20% of the wild type oxyanion-stimulated ATPase activity, while the purified proteins from the other mutants were catalytically inactive. The KE21 mutation in the N-terminal nucleotide-binding site eliminated photoadduct formation with [alpha-32P] ATP, while the purified proteins with mutations in the C-terminal site retained the ability to form a photoadduct. Each mutant protein was capable of forming a membrane-bound complex in arsB expressing strains. These results suggest first that both sites are required for resistance and ATPase activity, and second that the conserved lysyl residue in the glycine-rich loop of the C-terminal nucleotide-binding site is not essential for catalytic activity.  相似文献   

20.
The high-affinity metal-binding site of isolated F(1)-ATPase from beef heart mitochondria was studied by high-field (HF) continuous wave electron paramagnetic resonance (CW-EPR) and pulsed EPR spectroscopy, using Mn(II) as a paramagnetic probe. The protein F(1) was fully depleted of endogenous Mg(II) and nucleotides [stripped F(1) or MF1(0,0)] and loaded with stoichiometric Mn(II) and stoichiometric or excess amounts of ADP or adenosine 5'-(beta,gamma-imido)-triphosphate (AMPPNP). Mn(II) and nucleotides were added to MF1(0,0) either subsequently or together as preformed complexes. Metal-ADP inhibition kinetics analysis was performed showing that in all samples Mn(II) enters one catalytic site on a beta subunit. From the HF-EPR spectra, the zero-field splitting (ZFS) parameters of the various samples were obtained, showing that different metal-protein coordination symmetry is induced depending on the metal nucleotide addition order and the protein/metal/nucleotide molar ratios. The electron spin-echo envelope modulation (ESEEM) technique was used to obtain information on the interaction between Mn(II) and the (31)P nuclei of the metal-coordinated nucleotide. In the case of samples containing ADP, the measured (31)P hyperfine couplings clearly indicated coordination changes related to the metal nucleotide addition order and the protein/metal/nucleotide ratios. On the contrary, the samples with AMPPNP showed very similar ESEEM patterns, despite the remarkable differences present among their HF-EPR spectra. This fact has been attributed to changes in the metal-site coordination symmetry because of ligands not involving phosphate groups. The kinetic data showed that the divalent metal always induces in the catalytic site the high-affinity conformation, while EPR experiments in frozen solutions supported the occurrence of different precatalytic states when the metal and ADP are added to the protein sequentially or together as a preformed complex. The different states evolve to the same conformation, the metal(II)-ADP inhibited form, upon induction of the trisite catalytic activity. All our spectroscopic and kinetic data point to the active role of the divalent cation in creating a competent catalytic site upon binding to MF1, in accordance with previous evidence obtained for Escherichia coli and chloroplast F(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号