首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
We examined induced androgenesis in vitro in the dioecious plantMelandrium album and aimed to produce complete plants from culturedimmature microspores. Flow cytometric analysis of nuclear DNAcontent was used to screen ploidy levels in regenerated plantsand to estimate the nuclear genome size in plants differingin sex. Haploid and spontaneous dihaploid (polyhaploid) femalesdominated among androgenic regenerants. Androgenic males occurredsporadically. They were exclusively dihaploid and geneticallysupermales (AAYY). The progenies obtained as a result of thecrosses between supermales and standard females contained onlymales. This is the first report on complete androgenesis inM. album from the microspores carrying the Y chromosome.Copyright1994, 1999 Academic Press Melandrium album (Miller) Garcke, pollen androgenesis, sex, female, male, supermale, flow-cytometry, nuclear genome size  相似文献   

2.
A milestone in the doubled haploid pathway of cassava   总被引:1,自引:0,他引:1  
This study was aimed at inducing androgenesis in cultured anthers of cassava (Manihot esculenta Crantz) to develop a protocol for the production of doubled haploids. Microspore reprogramming was induced in cassava by cold or heat stress of anthers. Since the anthers contain both haploid microspores and diploid somatic cells, it was essential to verify the origin of anther-derived calli. The origin of anther-derived calli was assessed by morphological screening followed by histological analysis and flow cytometry (FCM). Additionally, simple sequence repeat (SSR) and amplified fragmented length polymorphism (AFLP) assays were used for the molecular identification of the microspore-derived calli. The study clearly demonstrated the feasibility of producing microspore-derived calli using heat- or cold-pretreated anthers. Histological studies revealed reprogramming of the developmental pathway of microspores by symmetrical division of the nucleus. Flow cytometry analysis revealed different ploidy level cell types including haploids, which confirmed their origin from the microspores. The SSR and AFLP marker assays independently confirmed the histological and FCM results of a haploid origin of the calli at the DNA level. The presence of multicellular microspores in the in vitro system indicated a switch of developmental program, which constitutes a crucial step in the design of protocols for the regeneration of microspore-derived embryos and plants. This is the first detailed report of calli, embryos, and abnormal shoots originated from the haploid cells in cassava, leading to the development of a protocol for the production of doubled haploid plants in cassava.  相似文献   

3.
4.
Androgenesis may be induced in plants by a stress application on microspores or anthers. Temperature stress treatments have generally been confined to a single temperature regime (above or below ambient) lasting from a few hours to days. We introduced a gradient with two temperature pulses (30 s each) in the stress application on anthers of Datura metel L. by stepping the temperature up and down for a total period of 60 s. Anthers were immersed in sterile water preheated and cooled to the desired temperature and cultured on Nitsch medium. The temperature pulse gradient significantly improved androgenesis compared to single temperature treatments, resulting in increased mean embryogenesis of 128% over control for 45°/15°C, 110% for 45°/10°C, 113% for 40°/10°C and 96% for 45°/5°C. The 45°/10°C gradient also significantly increased the number of dividing microspores observed, after 14 days of anther culture. Besides the differential of the gradient, the temperature limit was important, with anthers not tolerating temperatures beyond 45°C. The temperature pulse gradient applied at an early stage of culture may increase the window of competency of microspores for androgenesis.  相似文献   

5.
Intra-nucleosomal cleavage of DNA into fragments of about 200 bp was demonstrated to occur in developing anthers, in which microspores had developed into the mid-late to late uni-nucleate stage in situ, i.e. at the verge of mitosis. The same was observed, but to a much larger extent, if these anthers were pre- treated by a hyper-osmotic shock. Pretreatment of anthers before the actual culture of microspores was required for optimal androgenesis of microspores. The use of the TUNEL reaction, which specifically labels 3 ends of DNA breaks, after intra-nucleosomal cleavage of DNA, revealed that DNA fragmentation mainly occurred in the loculus wall cells, tapetum cells and filament cells. TUNEL staining was absent or infrequently observed in the microspores of developing anthers in situ. Electron microscopy studies showed condensed chromatin in nuclei of loculus wall cells in the developing anthers. These observations at the chromatin and DNA level are known characteristics of programmed cell death, also known as apoptosis. Features of apoptosis were infrequently found in microspores from freshly isolated mature anthers. However, most tapetum cells had disappeared in these anthers and the remaining cell structures showed loss of cellular content. The viability of microspores in pre-treated anthers was comparable to those in freshly isolated anthers and almost four times higher than in anthers from control experiments. This observation was correlated with three to four times less microspores showing TUNEL staining and a two times higher level of ABA in the anther plus medium samples than in controls. Addition of ABA to the controls enhanced the viability and lowered the occurrence of apoptosis linked characteristics in the microspores. These data suggest that pre-treatment is effective in stimulating androgenesis because it leads to an increase in ABA levels which protects microspores from dying by apoptosis.  相似文献   

6.
7.
A protocol for the induction of androgenesis and plant regeneration from C. arabica cv. Caturra isolated microspores in vitro using colchicine pretreatment has been developed. Microspores were mechanically isolated and then carefully purified. Before colchicine pretreatment, microspores were cultured in a semi-solid medium for further develop and regeneration. Different times of colchicine exposure as well as different concentrations were tested. The best androgenic response was found when microspores were precultured in 100 mg l–1 colchicine for 48 h. The microspore developmental stages responsive to colchicine were late-uninucleated and early binucleated pollen. Flow cytometry and morphological analyses revealed that 95% of regenerated plants were dihaploids (2n=2x=22). However, some doubled dihaploid plants (2n=4x=44) were also obtained, suggesting that not only androgenic induction but also chromosome duplication could be expected as result of colchicine exposure of coffee microspores. This report represents a new approach in the coffee pollen culture, as well as a major step forward to the utilization of haploid technology in coffee breeding.  相似文献   

8.
DNA content determinations were carried out by flow cytometry on nuclear suspensions prepared from the same paraffin-embedded tissue block for each of eight surgically resected human carcinomas at section thicknesses of 5,10,20,30,40,50, and 100 millimicrons. Flow cytometric DNA determinations were also obtained on fresh tissue specimens in four of the eight carcinomas. As section thickness decreased below 50 millimicrons, there was a progressive increase in the histogram baseline noise at low DNA values and a decrease in the relative peak height of aneuploid DNA. The former was attributed to an increase of nuclear fragments in thinner sections, and the latter to the greater probability of transection of the larger aneuploid cells within a specimen. Both artifacts were minimized at section thickness of 50 millimicrons or greater.  相似文献   

9.
Embryogenesis can be initiated directly from microspores or pollen grains. This is known as androgenesis and refers to the process of redirection of normal pollen development (gametophytic pathway) towards the embryo formation (sporophytic). This review mainly deals with the current knowledge of stress and developmental aspects of induction of androgenesis. The crucial role of stress inductive treatment together with changes in cell polarity are discussed in relation to other relevant biological systems. The intriguing speculations are made on the basis of these comparisons which may point out the direction of future investigations.  相似文献   

10.

Key message

A better understanding of androgenesis with a focus on the changes in plasma membrane fluidity and endogenous ABA content affecting embryogenesis induction in microspore suspension of B. napus.

Abstract

Changes in plasma membrane fluidity (MF) and ABA content associated with androgenesis induction were under the study. Both parameters were monitored in microspores of two Brassica napus L. genotypes differing in their response to androgenic induction under heat (1 day at 32 °C). MF was assessed by DPH method. ABA content was evaluated by ELISA. Heat caused microspores’ plasma membrane to become more rigid. Lower MF in microspores of ‘DH 4079’ (of high androgenic potential) seems to maintain proper cell protection and leads to efficient embryogenesis induction. Plasma membrane remodelling coincided with changes of ABA content in microspores and in the culture medium in both genotypes. ABA concentration (μM) and ABA content (fmol per 104 microspores or pmol g?1 FW) were for the first time measured in microspores. ABA concentration (μM) in microspores and in the culture medium (nM) differed significantly for the genotype and the treatment. The interaction between both variables was also significant. In general, ABA content ranged from <3.5 to 87.1 fmol per 104 microspores. The highest content of ABA was detected in ‘DH 4079’ microspores at 32 °C. Assuming a mean microspores’ radius of 10 μm, it corresponds to ABA concentration of 2.1 μM. Heat shock resulted in quantum of medium pH reduction (0.1–0.2) and increased levels of ABA in microspores and in the medium of both tested genotypes. However, heat induced increase of ABA content in microspores of non-responsive ‘Campino’ had no clear-cut impact, on androgenesis induction efficiency, which suggests a more complex mechanism of process initiation.  相似文献   

11.
Shim YS  Kasha KJ 《Plant cell reports》2003,21(11):1065-1071
The objective of this study was to correlate the time that DNA synthesis first occurs in haploid microspores of barley with cell cycle and plant morphological stages and to subsequently assess the influence of pretreatments on DNA synthesis at different stages of microspore development. Spikes with microspores in early, mid, and late uninucleate stages of the two-rowed barley cultivars Manley and Igri were subjected to two commonly used pretreatments. First, during cold pretreatment for 28 days there was a slow increase in relative DNA values as well as asymmetric nuclear divisions in some microspores. Second, during a 4-day cold plus 0.3 M mannitol pretreatment, there was very little change in the microspore stage or DNA values indicating that for the duration of this pretreatment the progression of the cell cycle was essentially suspended at all stages, both in Igri and Manley. The results are discussed relative to the potential for genetic transformation of microspores.  相似文献   

12.
The inherent potential to produce plants from microspores or immature pollen exists naturally in many plant species. Some genotypes in hexaploid wheat (Triticum aestivum L.) also exhibit the trait for androgenesis. Under most circumstances, however, an artificial manipulation, in the form of physical, physiological and/or chemical treatment, need to be employed to switch microspores from gametophytic development to a sporophytic pathway. Induced embryogenic microspores, characterized by unique morphological features, undergo organized cell divisions and differentiation that lead to a direct formation of embryoids. Embryoids `germinate' to give rise to haploid or doubled haploid plants. The switch from terminal differentiation of pollen grain formation to sporophytic development of embryoid production involves a treatment that halts gametogenesis and initiates sporogenesis showing predictable cellular and molecular events. In principle, the inductive treatments may act to release microspores from cell cycle control that ensures mature pollen formation hence overcome a developmental block to embryogenesis. Isolated microspore culture, genetic analyses, and studies of cellular and molecular mechanisms related to microspore embryogenesis have yielded useful information for both understanding androgenesis and improving the efficiency of doubled haploid production. The precise mechanisms for microspore embryogenesis, however, must await more research.  相似文献   

13.
Summary The origins of pollen embryogenesis are still in doubt. Totipotency of plant cells has traditionally been put forward as an explanation for this phenomenon but we have found this interpretation to involve some shortcomings. The pollen grain is a highly differentiated structure which should have a very reduced capability of regenerating a whole plant, whereas in some species the induction of androgenesis appears to occur with greater facility than somatic embryogenesis. Furthermore, some microspores seem to have a tendency to morphogenesis and organogenesis; spontaneous androgenesis occurs naturally in various species and many examples also occur of pollen dimorphism. Totipotency would seem to be insufficient to explain androgenesis and we propose that its origin might be found in the phenomenon of atavism. According to studies published on ancestral precursors of pollen, these structures appear to have had high proliferation capacity. The ability to form a multicellular structure from a single haploid cell is shared by the meiocytes of ancestral algae, of the first land plants, and of present-day ferns, which are evolutionarily related to pollen. Atavism is only expressed under certain circumstances, as indeed is androgenesis, normally as a consequence of an environmental stress. Our conclusion is that there is evidence enough to suggest that androgenesis may well be the expression of archaic genes of meiocytes with morphogenic capacity which were naturally expressed in the ancestors of flowering plants.  相似文献   

14.
Horse chestnut (Aesculus hyppocastanum L., Hyppocastanacea) is a relict species with a slow and complex reproductive cycle considered to have horticultural and medical importance. The cycle maybe circumvented via in vitro androgenesis. Androgenesis of horse chestnut was induced in microspores and anther culture on MS media. Some of the horse chestnut androgenic embryos were albinos. Addition of abscisic acid in media (in concentrations of 0.01, 0.1, 0.5, 1, 2, 5, 10, and 20 mg l?1) with horse chestnut androgenic embryos has circumvented the reproduction cycle barriers. The best results were achieved on medium with the lowest abscisic acid concentration (0.01 mg l?1) in microspore culture. The microspore culture proved to be a better model system for embryo production and albino embryo reduction than anther culture. Flow cytometry analysis after maturation treatments induced by ABA showed that 88 % of green embryos originating from microspore culture were haploid. However, 50 % of green embryos from anther culture were haploid. The remaining analyzed androgenic embryos, from both types of cultures were diploid.  相似文献   

15.
In stress conditions, microspores and young pollen grains can be switched from their normal pollen development toward an embryogenic pathway via a process called androgenesis. Androgenic embryos can produce completely homozygous, haploid or double-haploid plants. This study aimed to investigate changes in the abundance of protein species during cold pretreatment and subsequent cultivation of maize anthers on induction media using gel-based proteomics. Proteins upregulated on the third day of anther induction were identified and discussed here. Simultaneous microscopic observations revealed that the first division occurred in microspores within this period. Using 2-D electrophoresis combined with MALDI TOF/TOF MS/MS analysis 19 unique proteins were identified and classified into 8 functional groups. Proteins closely associated with metabolism, protein synthesis and cell structure were the most abundant ones. Importantly, ascorbate peroxidase, an enzyme decomposing hydrogen peroxide, was also upregulated. Isozyme analysis of peroxidases validated the proteomic data and showed increased peroxidase activities during androgenic induction. Further, the isozyme pattern of SOD revealed increased activity of the MnSOD, which could provide hydrogen peroxide as a substrate for in vivo peroxidase reactions (including ascorbate peroxidase). Together, these data reveal the role of enzymes controlling oxidative stress during induction of maize androgenesis.  相似文献   

16.
Nucleotypic variation has been speculated to play a role inthe adaptation of crop species to environmental stress. Theobjective of this study was to determine if nuclear DNA contentvariability was associated with aluminium (Al) tolerance inwheat. Six wheat (Triticum aestivumL.) near isolines (differingin Al response), two recurrent parents (Al sensitive), and onedonor parent (Al tolerant) were all analysed for nuclear DNAcontent using flow cytometry. A 1.7% variation in nuclear DNAcontent was observed among the nine wheat lines. No associationbetween Al response and nuclear DNA content was observed. Allof the wheat near isolines had a nuclear DNA content similarto their recurrent parent. The wheat genome appears to be stablewith no unusual inheritance of nuclear DNA content observed.Flow cytometric analysis proved to be sensitive enough to detectnuclear DNA content variability at the level of 0.5% variationamong wheat lines.Copyright 1999 Annals of Botany Company Genome size,Triticum,breeding, near isogenic.  相似文献   

17.
We report a procedure for the rapid and convenient detection of aneuploidy in triploid Musa using DNA flow cytometry. From a population of plants derived from gamma-irradiated shoot tips, plants were selected based on aberrant morphology and their chromosome numbers were counted. Aneuploids plants with chromosome numbers 2n=31 or 32 were found as well as the expected triploid plants (2n=3x=33). At the same time, the nuclear DNA content of all plants was measured using flow cytometry. The flow cytometric assay involved the use of nuclei isolated from chicken red blood cells (CRBC), which served as an internal reference standard. The relative DNA content of individual plants was expressed as a ratio of DNA content of CRBC and Musa (DNA index). In order to estimate the chromosome number using flow cytometry, the relative DNA content of plants with unknown ploidy was expressed as a percentage of the DNA content of triploid plants. The classification based on flow cytometry fully agreed with the results obtained by chromosome counting. The results indicated that flow cytometry is a convenient and rapid method for the detection of aneuploidy in Musa.  相似文献   

18.
The coenocytic alga Valonia macrophysa Kützing was selected for an investigation of nuclear synchrony in the order Siphonocladales. Light microscopy reveals that nuclear synchrony is evident as patches of nuclei dividing simultaneously. Flow cytometry was utilized for the first time with a macroalga for cell-cycle analysis. Results indicate that nuclei in the entire cell exhibit a high degree of synchrony throughout the cell cycle. Also it appears that cells within a clonal culture are synchronous with each other, in their progression through the cell cycle. The advantages of using flow cytometry for cell-cycle analysis of coenocytic algae include the rapid collection of quantitative data on relative DNA content for a large number of nuclei.  相似文献   

19.
Following abiotic stress to induce barley (Hordeum vulgare L.) androgenesis, the development of 794 enlarged microspores in culture was monitored by time-lapse tracking. In total, 11% of the microspores tracked developed into embryo-like structures (type-I pathway), 36% formed multicellular structures (type-II pathway) and 53% of the microspores followed gametophytic divisions, accumulated starch and died in the first days of tracking (type-III pathway). Despite the microspore fate, enlarged microspores showed similar morphologies directly after stress treatment. Ultrastructural analysis, however, revealed two morphologically distinct cell types. Cells with a thin intine layer and an undifferentiated cytoplasm after stress treatment were associated with type-I and type-II pathways, whereas the presence of differentiated amyloplasts and a thick intine layer were associated with the type-III pathway. Tracking revealed that the first morphological change associated with embryogenic potential was a star-like morphology, which was a transitory stage between uninucleate vacuolated microspores after stress and the initiation of cell division. The difference between type-I and type-II pathways was observed during the time they displayed the star-like morphology. During the transition phase, embryo-like structures in the type-I pathway were always released out of the exine wall at the opposite side of the pollen germ pore, whereas in the type-II pathway multicellular structures were unable to break the exine and to release embryo-like structures. Moreover, by combining viability studies with cell tracking, we show that release of embryo-like structures was preceded by a decrease in viability of the cells positioned at the site of exine wall rupture. These cells were also positively stained by Sytox orange, a cell death indicator. Thereby, we demonstrate, for the first time, that a position-determined cell death process marks the transition from a multicellular structure into an embryo-like structure during barley androgenesis.  相似文献   

20.
Diploid nuclei from stem, mesocotyl, nodal root and root tiptissue of two maize hybrids were examined with respect to theirDNA content. The nuclei were isolated and stained with DAPIand passed through a flow cytometer-cell sorter. The titrationcurve for each tissue was determined. Significant variationwas observed among nuclei of different tissue types. Stem androot tips had the highest diploid nuclear DNA amounts while2-week-old mesocotyl had the lowest diploid nuclear DNA amount.These results provide evidence that during plant developmentand differentiation, the amount of DNA within a diploid nucleuschanges through loss of specific DNA sequences. This study alsodemonstrates the sensitivity of flow cytometry in detectingsmall intraplant variation in nuclear DNA. Key words: Flow cytometry, fluorochrome DAPI, DNA content, tissue differentiation, plant development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号