首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions.  相似文献   

2.
To elucidate the mechanism by which white fluorescent light (5 W m-2) stimulates the formation of diferulic acid (DFA) in cell walls, the effect of light on phenylalanine-and tyrosine-ammonia-lyase (PAL, EC 4.3.1.5 and TAL, EC 4.3.1.5) and peroxidase activities was studied using coleoptiles of maize ( Zea mays L. cv. Cross Bantam T51). Growth rate of dark-grown coleoptiles was highest at the basal zone and decreased towards the tip, while continuous irradiation caused an inhibition of growth, especially at the basal zone. Light decreased the cell wall extensibility in all zones of the coleoptile. The amounts of DFA, ferulic acid (FA) and p -coumaric acid ( p -CA) increased by severalfold in cell walls of light-grown maize coleoptiles as compared with those grown in the dark. Strong correlations were observed between the increase in the contents of either DFA, FA or p -CA and the decrease in cell wall extensibility. Light decreased the wall-bound peroxidase activity. No correlation was found between DFA content and peroxidase activity. The activities of PAL and TAL were enhanced upon white light irradiation. The increment in either DFA, FA or p -CA content was correlated with an increase in PAL activity, but not with that in TAL activity. White light may promote DFA formation in the cell walls of maize coleoptiles by enhancing PAL activity.  相似文献   

3.
The relationship between the mechanical properties of cell walls and the levels of wall-bound ferulic (FA) and diferulic (DFA) acids was investigated in wheat (Triticum aestivum L.) coleoptiles grown under osmotic stress (60 mM polyethylene glycol [PEG] 4000) conditions. The cell walls of stressed coleoptiles remained extensible compared with those of the unstressed ones. The contents of wall-bound FA and DFA increased under unstressed conditions, but the increase was substantially reduced by osmotic stress. In response to PEG removal, these contents increased and reached almost the same levels as those of the unstressed coleoptiles. A close correlation was observed between the contents of FA and DFA and the mechanical properties of cell walls. The activities of phenylalanine ammonia-lyase and tyrosine ammonia-lyase increased rapidly under unstressed conditions. Osmotic stress substantially reduced the increases in enzyme activities. When PEG was removed, however, the enzyme activities increased rapidly. There was a close correlation between the FA levels and enzyme activities. These results suggest that in osmotically stressed wheat coleoptiles, reduced rates of increase in phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities suppress phenylpropanoid biosynthesis, resulting in the reduced level of wall-bound FA that, in turn, probably causes the reduced level of DFA and thereby maintains cell wall extensibility.  相似文献   

4.
Application of abscisic acid (ABA) to dark-grown wheat (Triticumaestivum L.) roots interfered the cell wall hardening of coleoptilesduring several days of the treatment. Although the amounts ofwall-bound diferulic (DFA) and ferulic (FA) acids in coleoptilesincreased as the coleoptiles grew, ABA substantially reducedtheir increases. When ABA was removed, however, these contentsincreased and reached levels near those of control coleoptiles.A close correlation was observed between the levels of DFA andFA and the mechanical properties of cell walls. The ratio ofthe amount of DFA to FA was almost constant irrespective ofgrowth conditions. The activities of phenylalanine- (PAL) andtyrosine-ammonia-Iyase (TAL) increased rapidly in the controlcoleoptiles. ABA greatly reduced the increases in these enzymeactivities. In response to ABA removal, the enzyme activitiesincreased rapidly. There was a close correlation between theincrease in FA level and the changes in enzyme activities. Theseresults suggest that ABA suppresses the increases in PAL andTAL activities in wheat coleoptiles, resulting in the reducedlevel of wall-bound FA, which, in turn, may cause the reducedDFA level and thereby maintain cell wall extensibility. (Received January 10, 1997; Accepted April 22, 1997)  相似文献   

5.
Oxalate oxidase (OXO) utilizes oxalate to generate hydrogen peroxide, and thereby acts as a source of hydrogen peroxide. The present study was carried out to investigate whether apoplastic OXO modifies the metabolism of cell wall-bound ferulates in wheat seedlings. Histochemical staining of OXO showed that cell walls were strongly stained, indicating the presence of OXO activity in shoot walls. When native cell walls prepared from shoots were incubated with oxalate or hydrogen peroxide, the levels of ester-linked diferulic acid (DFA) isomers were significantly increased. On the other hand, the level of ester-linked ferulic acid (FA) was substantially decreased. The decrease in FA level was accounted neither by the increases in DFA levels nor by the release of FA from cell walls during the incubation. After the extraction of ester-linked ferulates, considerable ultraviolet absorption remained in the hemicellulosic and cellulose fractions, which was increased by the treatment with oxalate or hydrogen peroxide. Therefore, a part of FA esters may form tight linkages within cell wall architecture. These results suggest that cell wall OXO is capable of modifying the metabolism of ester-linked ferulates in cell walls of wheat shoots by promoting the peroxidase action via supply of hydrogen peroxide.  相似文献   

6.
Effects of polyethylene glycol (PEG)-induced osmotic stress on the mechanical properties of cell walls and the levels of their components were investigated along intact wheat (Triticum aestivum L.) coleoptiles. Stress-relaxation analysis showed that the cell walls of stressed coleoptiles were loosened as compared with those of unstressed ones not only in the apical but in the basal regions. The amounts of wall-bound ferulic acid (FA) and diferulic acid (DFA) of stressed coleoptiles were substantially lower than those of unstressed ones in all regions. The cellulose and hemicellulose contents increased toward the coleoptile base. Osmotic stress reduced the cellulose content in the basal region but it slightly affected the hemicellulose content. The molecular weight of hemicellulose in the apical region of stressed coleoptiles was higher than that of unstressed ones, while that in the basal region was almost the same in both coleoptiles. FA, DFA and cellulose contents correlated with the cell wall mechanical property. The amount and molecular weight of hemicellulose, however, did not correlate. These results suggest that the reduced levels of FA and DFA in all regions and cellulose in the basal region of wheat coleoptiles are involved in maintaining the cell wall extensibility under osmotic stress.  相似文献   

7.
White fluorescent light (5 W m−2) inhibited Avena coleoptile growth. Light caused in increase in minimum stress relaxation time and a decrease in extensibility (strain/load) of coleoptile cell walls. Light increased the contents of ferulic acid (FA) and diferulic acid (DFA) ester-linked to the hemicellulose I in cell walls. These changes in the phenolic contents correlated with those of the mechanical properties of cell walls, suggesting that light stimulates the formation of DFA in hemicellulose I, making cell walls rigid, and thus results in growth inhibition. The ratio of DFA to FA was almost constant in the dark, but decreased in light, although it was almost constant in Oryza coleoptiles either in the dark or in light (Tan et al. 1992). From this fact, it is speculated that in the light condition, the formation of DFA in cell walls is limited in the step of the peroxidase catalyzed coupling reaction to produce DFA, while in the dark it is limited in the step of the feruloylation of hemicellulose I.  相似文献   

8.
Rice ( Oryza sativa L. cv. Sasanishiki) coleoptiles grown under water achieved greater length than those grown either in air or under water with constant air bubbling. The extensibility of cell walls in coleoptiles grown under water was larger than that in the other treatments. Per unit length of the coleoptile, the content of ferulic and diferulic acids ester-linked to hemicelluloses was higher in air and bubbling type coleoptiles than in water type ones. The extensibility of the coleoptile cell walls correlated with the content of diferulic acids per unit length and per hemicellulose, suggesting that the enhancement of the formation of diferulic acid bridges in hemicelluloses in air or under water with air bubbling makes the cell walls mechanically rigid; thereby inhibiting cell elongation in rice coleoptiles. In addition, the ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age, zone and growth conditions, suggesting that the feruloylation of hemicelluloses is rate-limiting in the formation of diferulic acid bridges in the cell walls of rice coleoptiles.  相似文献   

9.
Changes in the amount and composition of cell wall constituents in response to continuous hypergravity stimuli were studied in wheat ( Triticum aestivum L.) coleoptiles. The lengths of coleoptiles grown under hypergravity (300  g ) conditions for 2–4 days from germination stage were 60–70% of those of 1  g control. However, the net amounts of hemicellulosic polysaccharides and cellulose in hypergravity-treated coleoptiles increased progressively as much as those in the control coleoptiles. As a result, their contents per unit length of coleoptile largely increased under hypergravity conditions. In the hemicellulose fraction, the amounts of arabinose and xylose, the major components of the fraction, prominently increased in response to hypergravity. When hemicellulosic polysaccharides were separated into neutral and acidic polymers by an anion-exchange column, the amounts of the acidic fraction consisting of (glucurono)arabinoxylans were higher in hypergravity-treated coleoptiles than in control coleoptiles. The amounts of cell wall-bound ferulic acid and diferulic acid (DFA) increased dramatically in both 1  g control and hypergravity-treated coleoptiles. Particularly, the amounts of DFA in hypergravity-treated coleoptiles were significantly higher than those in control coleoptiles during the incubation period. These results suggest that continuous hypergravity increases the rigid network structures via arabinoxylan–hydroxycinnamate cross-links within cell wall architecture in wheat coleoptiles. These structures may have a load-bearing function and contribute to construct the stable cell wall against the gravitational force.  相似文献   

10.
When auxin stimulates rapid cell elongation growth of cereal coleoptiles, it causes a degradation of 1,3:1,4-beta-glucan in hemicellulosic polysaccharides. We examined gene expressions of endo-1,3:1,4-beta-glucanase (EI) and exo-beta-glucanase (ExoII), of which optimum pH are about 5, and molecular distribution of hemicellulosic polysaccharides in barley (Hordeum vulgare L.) coleoptile segments treated with or without IAA. IAA (10(-5) M) stimulated the gene expression of EI, while it did not affect that of ExoII. IAA induced gene expression of EI after 4 h and increased wall-bound glucanase activity after 8 h. The molecular weight distribution of hemicellulosic polysaccharides from coleoptile cell walls was shifted to lower molecular weight region by 2 h of IAA treatment. Fusicoccin (10(-6) M) mimicked IAA-induced elongation growth and the decrease in molecular weight of hemicellulosic 1,3:1,4-beta-glucan of coleoptiles in the first 4 h, but it did not promote elongation growth thereafter. These facts suggest that acidification of barley cell walls by IAA action enhances pre-existing cell wall-bound glucanase activity in the early first phase of IAA-induced growth and the late second phase involves the gene expression of EI by IAA.  相似文献   

11.
Indole-3-acetic acid and 1-aminocyclopropane-1-carboxylic acid, the precursor of ethylene, stimulated elongation of coleoptiles of seedlings of intact rice ( Oryza sativa L. cv. Sasanishiki) submerged in buffer solution with constant air-bubbling. The osmotic pressure of the cell sap decreased during elongation of coleoptiles. In the presence of 30 μ M aminooxyacetic acid, an inhibitor of ethylene biosynthesis, in-dole-3-acetic acid at 30 μ M accelerated the decrease in the osmotic pressure in the early stage of growth. 1-Aminocyclopropane-1-carboxylic acid at 30 μ M did not influence the decrease in the osmotic pressure.
Both indole-3-acetic acid and 1-aminocyclopropane-1-carboxyIic acid decreased the minimum stress-relaxation time and the relaxation rate of the cell wall, suggesting that both auxin and ethylene induce elongation of rice coleoptiles by stimulating cell wall loosening. These growth regulators caused an increase in the level of glucose in hemicelluloses in the early stage of growth and a decrease in the level in the subsequent last growth phase. Indole-3-acetic acid decreased the hydroxyproline and glucosamine levels per unit dry weight of the cell wall. These changes in the level of cell wall components may be associated with the changes in the mechanical properties of the cell walls caused by auxin and ethylene.  相似文献   

12.
棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系   总被引:7,自引:0,他引:7  
棉纤维细胞于开花当天从棉胚珠表皮上发生,随即开始伸长生长,星S型生长曲线。棉纤维细胞的可溶性蛋白、过氧化物酶活性和IAA氧化酶活性同伸长生长的关系不大;而离子型结合的细胞壁蛋白质含量、过氧化物酶活性和IAA氧化酶活性同棉纤维细胞的伸长生长关系较大,表现在棉纤维细胞快速伸长期活性较低,而在伸长生长停止时出现活性高峰,同棉纤维细胞的伸长生长有负相关现象。  相似文献   

13.
The mechanism inducing the difference in growth rate under various temperature (10–50 °C) conditions was analyzed using rice and azuki bean seedlings. The growth rate of rice coleoptiles and azuki bean epicotyls increased as temperature increased up to 40 and 30 °C, respectively, and the elongation was retarded at a higher temperature. The cell wall extensibility of rice coleoptiles and azuki bean epicotyls also showed the highest value at 40 and 30 °C, respectively, and became smaller as the temperature rose or dropped from the optimum. The opposite tendency was observed in the minimum stress-relaxation time of the cell wall. On the other hand, the cellular osmotic concentration of rice coleoptiles and azuki bean epicotyls was lower at the temperature optimum for growth at 40 and 30 °C, respectively. When rice and azuki bean seedlings grown at 10, 20, 40, or 50 °C were transferred to the initial temperature (30 °C), the growth rate of coleoptiles and epicotyls was mostly elevated, concomitant with an increase in the cell wall extensibility. The growth rate was correlated with the cell wall mechanical parameters in both materials. These results suggest that the environmental temperature modulates the growth rate of plant shoots by affecting mainly the mechanical properties of the cell wall. Electronic Publication  相似文献   

14.
We analyzed the growth rate and the cell wall properties of coleoptiles of rice seedlings grown at 23.6 degrees C for 68.5, 91.5 and 136 h during the Space Shuttle STS-95 mission. In space, elongation growth of coleoptiles was stimulated and the cell wall extensibility increased. Also, the levels of the cell wall polysaccharides per unit length of coleoptiles and the relative content of the high molecular mass matrix polysaccharides decreased in space. These differences in the cell wall polysaccharides could be involved in increasing the cell wall extensibility, leading to growth stimulation of rice coleoptiles in space.  相似文献   

15.
The effect of submergence of air-grown rice seedlings (Oryza sativa L. var. Sasanishiki) on coleoptile growth and ultrastructure, extensibility and chemical composition of the cell walls was investigated. The lag-time between start of submergence and the onset of the enhancement of growth was less than 4 h. The growth response was associated with a drastic thinning of the cell walls and an increase in wall extensibility. At the outer epidermal wall of both air-grown and submerged coleoptiles electron-dense (osmiophilic) particles were detected. During submergence, the net accumulation of cellulose and hemicellulose was reduced, but the increase in pectic substances was unaffected. Submergence caused an 80% inhibition of the net accumulation of wall-bound phenolics (ferulic- and diferulic acid) compared with air-grown controls. The osmotic concentration of the tissue saps was not affected by submergence. Our results support the hypothesis that rapid coleoptile elongation under water is caused by an inhibition of the formation of phenolic cross-links between matrix polysaccharides via diferulate, which results in a mechanical stiffening of the cell walls in the air-grown coleoptile.  相似文献   

16.
During Space Shuttle STS-95 mission, we cultivated seedlings of rice (Oryza sativa L. cv. Koshihikari and cv. Tan-ginbozu) and Arabidopsis (Arabidopsis thaliana L. cv. Columbia and cv. etr1-1) for 68.5, 91.5, and 136 hr on board, and then analyzed changes in the nature of their cell walls, growth, and morphogenesis under microgravity conditions. In space, elongation growth of both rice coleoptiles and Arabidopsis hypocotyls was stimulated. Also, the increase in the cell wall extensibility, especially that in the irreversible extensibility, was observed for such materials. The analyses of the amounts, the structure, and the physicochemical properties of the cell wall constituents indicated that the decreases in levels and molecular masses of cell wall polysaccharides were induced under microgravity conditions, which appeared to contribute to the increase in the wall extensibility. The activity of certain wall enzymes responsible for the metabolic turnover of the wall polysaccharides was increased in space. By the space flight, we also confirmed the occurrence of automorphogenesis of both seedlings under microgravity conditions; rice coleoptiles showed an adaxial bending, whereas Arabidopsis hypocotyls elongated in random directions. Furthermore, it was shown that spontaneous curvatures of rice coleoptiles in space were brought about uneven modifications of cell wall properties between the convex and the concave sides.  相似文献   

17.
The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice ( Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10–50°C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30–40°C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40°C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30–40°C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40°C were substantially higher than those grown at 10, 20 and 50°C. Furthermore, the activities of (1→3),(1→4)- β -glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1→3),(1→4)- β -glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30–40°C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of β -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of β -glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.  相似文献   

18.
2,6-Dichlorobenzonitrile (DCB) inhibited only increases in levelsof the cellulosic polysac-charides while monensin and galactoseinhibited increases in levels of both the cellulosic and thematrix polysaccharides in intact rice coleoptiles that weresubmerged in water. Elongation growth of rice coleoptiles wassuppressed by DCB at 10–6 M, by monensin at 10–7M, and by galactose at 3 ? 10–3 M and above. Thus, thesynthesis of both the cellulosic and the matrix polysaccharidesis essential for the elongation of intact rice coleoptiles.These inhibitors increased the minimum stress-relaxation timeand the relaxation rate and they decreased the mechanical extensibilityof the cell wall, indicating that they inhibited cell wall loosening.The concentrations of the inhibitors required for inhibitionof cell wall loosening were higher than those for suppressionof elongation. The data suggest that polysaccharides synthesisplays two roles in elongation. It keeps the cell wall in a "loosened"condition by producing new extensible cell walls, while itsother role is probably related to the fixation or extensionof polymers already present in the cell wall. (Received November 15, 1990; Accepted May 23, 1991)  相似文献   

19.
The effects of abscisic acid (ABA) and methyl jasmonate (MJ) on growth of rice seedlings were compared. The lowest tested concentration of ABA and MJ that inhibited seedling growth was found to be 4.5 and 0.9 µM, respectively. Growth inhibition by ABA is reversible, whereas that by MJ is irreversible. GA3 was found to be more effective in reversing inhibition of shoot growth by ABA than by MJ. KCl partially relieved MJ-inhibited, but not ABA-inhibited, growth of rice seedlings. The beneficial effect of K+ on growth of rice seedlings in MJ medium could not be replaced by Li+, Na+ or Cs+. MJ treatment caused a marked release of K+ into the medium. In order to understand whether cell wall-bound peroxidase activity was inversely related to rice seedling growth, effects of ABA and MJ on cell wall-bound peroxidase activity were also examined. Results indicated that both ABA and MJ increased cell wall-bound peroxidase activity in roots and shoots of rice seedlings. Although MJ (4.5 µM) was less effective in inhibiting root growth than ABA (9 µM), MJ was found to increase more cell wall-bound peroxidase activity in roots than ABA.  相似文献   

20.
Effects of silicon on the mechanical and chemical properties of cell walls in the second leaf of oat (Avena sativa L.) seedlings were investigated. The cell wall extensibility in the basal region of the second leaf was considerably higher than that in the middle and subapical regions. Externally applied silicon increased the cell wall extensibility in the basal region, but it did not affect the extensibility in the middle and subapical regions. The amounts of cell wall polysaccharides and phenolic compounds, such as diferulic acid (DFA) and ferulic acid (FA), per unit length were lower in the basal region than in the middle and subapical regions of the leaf, and silicon altered these amounts in the basal region. In this region, silicon decreased the amounts of matrix polymers and cellulose per unit length and of DFA and FA, both per unit length and unit matrix polymer content. Silicon treatment also lowered the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) in the basal region. In contrast, the amount of silicon in cell walls increased in response to silicon treatment in three regions. These results suggest that in the basal region, silicon reduces the net wall mass and the formation of phenolic acid-mediated cross-linkages between wall polysaccharides. Such modifications of wall architecture may be responsible for the silicon-induced increase in the cell wall extensibility in oat leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号