首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent evidence strongly suggests that biodiversity loss and ecosystem degradation continue. How might a systems approach to ecology help us better understand and address these issues? Systems approaches play a very limited role in the science that underpins traditional biodiversity conservation, but could provide important insights into mechanisms that affect population growth. This potential is illustrated using data from a critically endangered bird population. Although species-specific insights have practical value, the main applied challenge for a systems approach is to help improve our understanding of the role of biodiversity in the context of ecosystem services (ES) and the associated values and benefits people derive from these services. This has profound implications for the way we conceptualize and address ecological problems. Instead of focusing directly on biodiversity, the important response variables become measures of values and benefits, ES or ecosystem processes. We then need to understand the sensitivity of these variables to biodiversity change relative to other abiotic or anthropogenic factors, which includes exploring the role of variability at different levels of biological organization. These issues are discussed using the recent UK National Ecosystems Assessment as a framework.  相似文献   

2.
Planted forests are increasingly contributing wood products and other ecosystem services at a global scale. These forests will be even more important as carbon markets develop and REDD-plus forest programs (forests used specifically to reduce atmospheric emissions of CO2 through deforestation and forest degradation) become common. Restoring degraded and deforested areas with long-rotation planted forests can be accomplished in a manner that enhances carbon storage and other key ecosystem services. Knowledge from natural systems and understanding the functioning novel of ecosystems can be instructive for planning and restoring future forests. Here we summarize information pertaining to the mechanisms by which biodiversity functions to provide ecosystem services including: production, pest control, pollination, resilience, nutrient cycling, seed dispersal, and water quality and quantity and suggest options to improve planted forest management, especially for REDD-plus.  相似文献   

3.
Human activities have caused non-native plant species with novel ecological interactions to persist on landscapes, and it remains controversial whether these species alter multiple aspects of communities and ecosystems. We tested whether native and exotic grasslands differ in species diversity, ecosystem services, and an important aspect of functional diversity (C3:C4 proportions) by sampling 42 sites along a latitudinal gradient and conducting a controlled experiment. Exotic-dominated grasslands had drastically lower plant diversity and slightly higher tissue N concentrations and forage quality compared to native-dominated sites. Exotic sites were strongly dominated by C4 species at southern and C3 species at northern latitudes with a sharp transition at 36–38°, whereas native sites contained C3:C4 mixtures. Large differences in C3:C4 proportions and temporal niche partitioning were found between native and exotic mixtures in the experiment, implying that differences in C3:C4 proportions along the latitudinal gradient are caused partially by species themselves. Our results indicate that the replacement of native- by exotic-dominated grasslands has created a management tradeoff (high diversity versus high levels of certain ecosystem services) and that models of global change impacts and C3/C4 distribution should consider effects of exotic species.  相似文献   

4.
Biodiversity and ecosystem functioning: recent theoretical advances   总被引:40,自引:1,他引:40  
Michel Loreau 《Oikos》2000,91(1):3-17
The relationship between biodiversity and ecosystem functioning has emerged as a major scientific issue today. As experiments progress, there is a growing need for adequate theories and models to provide robust interpretations and generalisations of experimental results, and to formulate new hypotheses. This paper provides an overview of recent theoretical advances that have been made on the two major questions in this area: (1) How does biodiversity affect the magnitude of ecosystem processes (short‐term effects of biodiversity)? (2) How does biodiversity contribute to the stability and maintenance of ecosystem processes in the face of perturbations (long‐term effects of biodiversity)?
Positive short‐term effects of species diversity on ecosystem processes, such as primary productivity and nutrient retention, have been explained by two major types of mechanisms: (1) functional niche complementarity (the complementarity effect), and (2) selection of extreme trait values (the selection effect). In both cases, biodiversity provides a range of phenotypic trait variation. In the complementarity effect, trait variation then forms the basis for a permanent association of species that enhances collective performance. In the selection effect, trait variation comes into play only as an initial condition, and a selective process then promotes dominance by species with extreme trait values. Major differences between within‐site effects of biodiversity and across‐site productivity–diversity patterns have also been clarified. The local effects of diversity on ecosystem processes are expected to be masked by the effects of varying environmental parameters in across‐site comparisons.
A major reappraisal of the paradigm that has dominated during the last decades seems necessary if we are to account for long‐term effects of biodiversity on ecosystem functioning. The classical deterministic, equilibrium approaches to stability do not explain the reduced temporal variability of aggregate ecosystem properties that has been observed in more diverse systems. On the other hand, stochastic, nonequilibrium approaches do show two types of biodiversity effects on ecosystem productivity in a fluctuating environment: (1) a buffering effect, i.e., a reduction in the temporal variance; and (2) a performance‐enhancing effect, i.e., an increase in the temporal mean. The basic mechanisms involved in these long‐term insurance effects are very similar to those that operate in short‐term biodiversity effects: temporal niche complementarity, and selection of extreme trait values. The ability of species diversity to provide an insurance against environmental fluctuations and a reservoir of variation allowing adaptation to changing conditions may be critical in a long‐term perspective.
These recent theoretical developments in the area of biodiversity and ecosystem functioning suggest that linking community and ecosystem ecology is a fruitful avenue, which paves the way for a new ecological synthesis.  相似文献   

5.
Biodiversity and ecosystem function: the consumer connection   总被引:13,自引:1,他引:13  
J. Emmett Duffy 《Oikos》2002,99(2):201-219
Proposed links between biodiversity and ecosystem processes have generated intense interest and controversy in recent years. With few exceptions, however, empirical studies have focused on grassland plants and laboratory aquatic microbial systems, whereas there has been little attention to how changing animal diversity may influence ecosystem processes. Meanwhile, a separate research tradition has demonstrated strong top‐down forcing in many systems, but has considered the role of diversity in these processes only tangentially. Integration of these research directions is necessary for more complete understanding in both areas. Several considerations suggest that changing diversity in multi‐level food webs can have important ecosystem effects that can be qualitatively different than those mediated by plants. First, extinctions tend to be biased by trophic level: higher‐level consumers are less diverse, less abundant, and under stronger anthropogenic pressure on average than wild plants, and thus face greater risk of extinction. Second, unlike plants, consumers often have impacts on ecosystems disproportionate to their abundance. Thus, an early consequence of declining diversity will often be skewed trophic structure, potentially reducing top‐down influence. Third, where predators remain abundant, declining diversity at lower trophic levels may change effectiveness of predation and penetrance of trophic cascades by reducing trait diversity and the potential for compensation among species within a level. The mostly indirect evidence available provides some support for this prediction. Yet effects of changing animal diversity on functional processes have rarely been tested experimentally. Evaluating impacts of biodiversity loss on ecosystem function requires expanding the scope of current experimental research to multi‐level food webs. A central challenge to doing so, and to evaluating the importance of trophic cascades specifically, is understanding the distribution of interaction strengths within natural communities and how they change with community composition. Although topology of most real food webs is extremely complex, it is not at all clear how much of this complexity translates to strong dynamic linkages that influence aggregate biomass and community composition. Finally, there is a need for more detailed data on patterns of species loss from real ecosystems (community “disassembly” rules).  相似文献   

6.
7.
8.
Biodiversity is a key measure of environmental quality in lake ecosystems. Lake biodiversity can be assessed using modern survey data, but typically these data only provide a ‘snap-shot’ measure and in most cases it is not possible to reconstruct temporal trends in biodiversity, so that human impacts can be detected. Palaeoecological techniques offer an alternative means of identifying changes in biodiversity over the period of historical records and far beyond, but there are problems associated with this approach. This is because only a select set of organisms leave a trace in the sediment record such that it is not usually possible to make reliable assessments of diversity changes within an entire taxonomic order (e.g. the algae). Moreover these organisms are typically from the lower levels of the trophic hierarchy (i.e. plants and insects). The problems of identifying changes in biodiversity from the palaeolimnological record are addressed with reference to Groby Pool, a shallow, eutrophic, medieval lake in the English Midlands, which has been subjected to eutrophication over the last 150 years. 210Pb and 137Cs-dated sediment cores have been used to estimate short-term alterations in the composition and diversity of three groups of indicators, representing different levels in the trophic cascade, namely diatoms, aquatic pollen and chironomids. By exploring relationships, both between these indicators and with archival macrophyte records, an assessment is made of eutrophication-related changes in overall habitat diversity at the ecosystem level. These data suggest that the lake has undergone considerable nutrient enrichment, resulting in the loss of a diverse, mesotrophic macrophyte flora from at least the turn of the century onwards and its replacement by a few highly competitive species tolerant of high nutrient concentrations. Reductions in macrophyte diversity seem to be reflected palaeoecologically by a decline in the diversity of fossil chironomid assemblages, related to the breakdown of particular host-plant relationships amongst the phytophagic species. However, diatom assemblages generally exhibit the opposite trend, which may be related to increases in macrophyte cover and increasing opportunities for the colonization of diverse epiphyte communities. The different fossil indicators have different limitations and merits, and for this reason a ‘multi-proxy’ approach is essential if meaningful inferences are to be made of changes in lake biodiversity using palaeoecological data.  相似文献   

9.
生物多样性与森林生态系统健康的几个关键问题   总被引:5,自引:0,他引:5  
陈亮  王绪高 《生态学杂志》2008,27(5):816-820
生物多样性和生态系统健康问的关系,是生态学领域的一个重大科学问题,近年来已成为关注的热点.首先,生物多样性在复杂的时空尺度上维持着生态系统过程的运行,是生态系统功能得以维持的生物基础;其次,生物多样性是生态系统抗干扰能力、恢复能力及适应环境变化能力的物质基础.生态系统健康的维持取决于系统的生物多样性、可再生能力和生产力,维护生物多样性是生态系统管理计划中不可缺少的部分;第三,对生态系统健康程度的评价,很大程度上依赖于对生态过程的认识,而生物多样性及其生态系统功能又是认识和了解生态过程的基础.本文通过对森林生态系统异质性、种间关系及关键种、外来物种入侵、"绿色沙漠"等问题的论述,阐述了生物多样性与森林生态系统健康之间的关系,提出了我国所面临的问题和相应的对策.  相似文献   

10.
Biodiversity and stability of grassland ecosystem functioning   总被引:1,自引:0,他引:1  
D. A. Wardle  J. P. Grime 《Oikos》2003,100(3):622-623
  相似文献   

11.
12.
13.
The relationship between biodiversity and ecosystem functioning (B–EF) was investigated by examining top-down effects of aquatic detritivore diversity on the functional process of leaf-litter breakdown. This study was undertaken in tropical Hong Kong where the stream detritivore guild is depauperate and loss of one or a few species might have strong effects on processes. Effects of detritivore richness and composition were investigated by comparing feeding rates of three species of detritivores with their two- and three-species mixtures in laboratory trials. The detritivores were a caddisfly larva (Anisocentropus maculatus: Calamoceratidae), a snail (Brotia hainanensis: Pachychilidae) and a shrimp (Caridina cantonensis: Atyidae). Liquidambar formosana (Hamamelidaceae) litter was provided as food. All three detritivore species had positive non-additive effects on litter processing. Per capita and mass-specific feeding rates of each species were faster in mixtures than when they were alone, although the non-additive effects of shrimps and snails were larger than those attributable to caddisflies, and thus, litter processing was strongly influenced by the composition of detritivore mixtures. The compositional effect appears to be evidence of facilitation indicating a lack of functional redundancy amongst these detritivores, probably due to their evolutionary distinctness, implying that extinction consequences in this species-poor guild will depend on the identity of the species lost.  相似文献   

14.
Biodiversity and ecosystem functioning in naturally assembled communities   总被引:1,自引:0,他引:1  
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non‐manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real‐world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well‐being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.  相似文献   

15.
16.
Loreau M 《Current biology : CB》2008,18(3):R126-R128
Experiments performed in various ecosystems have shown a near-universal, saturating relationship between biodiversity and ecosystem processes. Analyses of deep-sea ecosystems challenge this generalisation and suggest that positive species interactions might be more widespread than previously believed.  相似文献   

17.
Biodiversity loss, trophic skew and ecosystem functioning   总被引:4,自引:4,他引:4  
Experiments testing biodiversity effects on ecosystem functioning have been criticized on the basis that their random‐assembly designs do not reflect deterministic species loss in nature. Because previous studies, and their critics, have focused primarily on plants, however, it is underappreciated that the most consistent such determinism involves biased extinction of large consumers, skewing trophic structure and substantially changing conclusions about ecosystem impacts that assume changing plant diversity alone. Both demography and anthropogenic threats render large vertebrate consumers more vulnerable to extinction, on average, than plants. Importantly, species loss appears biased toward strong interactors among animals but weak interactors among plants. Accordingly, available evidence suggests that loss of a few predator species often has impacts comparable in magnitude to those stemming from a large reduction in plant diversity. Thus, the dominant impacts of biodiversity change on ecosystem functioning appear to be trophically mediated, with important implications for conservation.  相似文献   

18.
Unprecedented rates of species extinctions have prompted extensive research into the consequences of biodiversity losses on ecosystem functioning. While aquatic species are most threatened, research with freshwater and marine model systems has lagged behind progress made in terrestrial environments. This editorial to a special feature summarizes the main outcomes of a conference aimed at setting the stage for exploring the potential of aquatic systems to assess the role of biodiversity in ecosystem functioning. This series of papers proposes fresh approaches to the study of biodiversity effects on ecosystem functioning, outlines a new way of analyzing experimental data, presents a model that considers scale as an important factor determining outcomes, explores the effects of multiple stressors on species richness and ecosystem processes, and develops a food-web perspective that relates ecosystem properties to biodiversity. An insightful synthesis of lessons learned from aquatic systems is premature at present, but the papers clearly demonstrate the role that marine and freshwater systems can play in resolving open questions. The implications go well beyond the biodiversity in, and functioning of, ecosystems shaped by free-flowing or standing water.  相似文献   

19.
20.
Marine biodiversity and ecosystem services: an elusive link   总被引:13,自引:0,他引:13  
Efforts to test the hypothesised positive link between ecosystem services and functions and biodiversity are increasing in order to forecast the consequences of the present erosion of biodiversity on ecosystem functions and to provide an additional basis for the conservation of biodiversity. These efforts have been, however, modest in marine ecosystems. An examination of seagrass communities, which are simple assemblages with a limited membership of about 50 species worldwide and <12 species in any one community, provides, however, strong evidence for the existence of such positive link between species richness and ecosystem functions. Ecosystem functions are, however, dependent on the particular membership of the community, rather that its number, for the functions are species-specific properties. Yet evidence, is provided, that an increasing species richness should be, on average, linked to an increase in the functional repertoire present in the community, will lead to a more efficient use of resources and a greater capacity to ensure the sustainability of ecosystem functions under disturbance or ecosystem change. Closer examination indicates that the functional variability of mixed-species seagrass assemblages is correlated to the variability in species size, whereas species of similar size tend to show similar functional capacities and, therefore, a greater degree of functional redundancy. In addition, the demonstration of positive interactions in seagrass communities, which are also dependent on the presence of engineering species in the community that facilitate the growth of other species, provides increasing grounds to expect an enhanced functional performance of mixed communities over that expected from a simple additive contribution of the community members. Multispecific communities also hold, within the functional repertoire they contain, many unrealised functional potentials that may prove instrumental to ensure the sustainability of ecosystem functions in the presence of disturbance or a changing environment. The arguments offered, illustrated for the comparatively simple seagrass communities, provide strong reasons to expect a strong — if difficult to test experimentally — positive relationship between species diversity and the functions of marine ecosystems and, thereby, the services they yield to humanity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号