首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulphate-reducing bacteria (SRB) in the thermal springs of Vajreshwari were investigated with combined microbiological and molecular approaches. A sulphate-reducing bacteria medium containing lactate was used for enrichment and isolation, which yielded Gram negative, rod shaped, anaerobic, non-spore forming and motile bacteria capable of reducing sulphate to sulphide. These grew at temperatures ranging from 25 to 55 °C and could use pyruvate, lactate and ethanol as electron donors. Desulfoviridin was detected in all the isolates. The partial 16S rRNA and dissimilatory sulphite reductase (DSR) gene sequences of five representative isolates revealed that the strains belonged to the sulphur reducing bacterial species Desulfovibrio vulgaris.  相似文献   

2.
A highly Al-resistant dissimilatory sulphate-reducing bacteria community was isolated from sludge of the wetland of Urgeiri?a mine (community W). This community showed excellent sulphate removal at the presence of Al3?. After 27 days of incubation, 73, 86 and 81% of sulphate was removed in the presence of 0.48, 0.90 and 1.30 mM of Al3?, respectively. Moreover, Al3? was simultaneously removed: 55, 85 and 78% of metal was removed in the presence of 0.48, 0.90 and 1.30 mM of Al3?, respectively. The dissociation of aluminium-lactate soluble complexes due to lactate consumption by dissimilatory sulphate-reducing bacteria can be responsible for aluminum removal, which probably precipitates as insoluble aluminium hydroxide. Phylogenetic analysis of 16S rRNA gene showed that this community was mainly composed by bacteria closely related to Desulfovibrio desulfuricans. However, bacteria affiliated to Proteus and Ralstonia were also present in the community.  相似文献   

3.
Microbial communities thriving at two hot springs, Hammam Pharaon (Pharaoh's Bath) and Oyoun Mossa (Moses springs), in Egypt was studied by cultural and molecular methods. Thirteen morphologically distinct strains of facultative anaerobic thermophilic bacterial isolates have been characterized and identified using phenotypic and genotypic characters including RAPD-PCR, ERIC-PCR typing, plasmid analysis and 16S rRNA sequencing. All isolates produced plasmid DNA with various sizes ranging from 0.7 kb to a larger plasmid 7.2 kb. The bacterial strains could tolerate a temperature range between 45 to 85°C and a pH between 4–11. Also, sulphate-reducing bacteria (SRB) in the thermal springs were investigated with combined biochemical and molecular approaches. A sulphate-reducing bacteria medium containing lactate was used for enrichment and isolation, which yielded Gram negative, rod shaped, anaerobic, non-spore-forming and motile bacteria capable of reducing sulphate to sulphide. These grew at temperatures ranging from 30 to 50°C and could use pyruvate, lactate and ethanol as electron donors. The dissimilatory sulphite reductase (DSR) gene sequences of eleven representative isolates revealed that the strains belonged to the sulphur reducing bacterial species Desulfovibrio vulgaris. 16S rRNA gene partial sequence results indicated the presence of novel or existing species of Bacillus (one species), Anoxybacillus (four species) and Geobacillus (eight species). In this study phenotypic and genotypic diversity were applied for the first time to differentiate thermophilic bacteria of such geothermal sites in Sinai, Egypt.  相似文献   

4.
The dynamics of the bacterial populations in an up-flow anaerobic packed bed system (UAPB), applied in acid mine drainage treatment using wine wastes as carbon and nutrients source was elucidated by temperature gradient gel electrophoresis (TGGE) analysis. Moreover, TGGE fingerprints of the bacterial communities developed in a UAPB fed with wine wastes and a UAPB fed with pure ethanol were compared. TGGE fingerprinting and phylogenetic analysis showed that the composition of the community in the UAPB fed with wine wastes remained stable during whole time of operation and its bacterial diversity was higher. The bacterial community of the UAPB fed with wine wastes was composed by bacteria affiliated with Desulfovibrio, Clostridium, Citrobacter and Cronobacter genera and with Bacteroidales order, sp. The dominant community developed in the UAPB fed with ethanol was composed by bacteria affiliated with Desulfovibrio sp. The presence of several bacterial groups in the bioreactor fed with wine wastes suggests a synergistic interaction between the different populations. Syntrophic interaction may be the key factor for the utilization of wine wastes, a complex organic substrate, as carbon and electron source for sulphate reduction.  相似文献   

5.
Marble stone powder (calcite tailing) is a residual material resulting from the cutting and polishing of marble stone. Its use as adjuvant for the biologic treatment of acid mine drainage is studied. The performance of a combined chemical/biologic packed bed reactor containing a sulphate-reducing bacteria inoculum and calcite tailing as neutralising agent was compared with the individual neutralisation and biologic steps. Unlike the individual steps, the combined column is efficient in terms of metals and sulphate removal and acidity neutralisation, producing treated water suitable for irrigation. This work emphasizes on the key role played by waste calcite tailing in the inlet of the reactor. By thus adjusting pH to values adequate for sulphate-reducing bacteria water suitable for irrigation can be obtained in a single equipment with low energy demand. This goal would be impossible without the neutralisation action.  相似文献   

6.
Detailed nutrient requirements were determined to maximise efficacy of a sulphate-reducing bacterial mixed culture for biotechnological removal of sulphate, acidity and toxic metals from waste waters. In batch culture, lactate produced the greatest biomass, while ethanol was more effective in stimulating sulphide production and acetate was less effective. The presence of additional bicarbonate and H2 only marginally stimulated sulphide production. The sulphide output per unit of biomass was greatest using ethanol as substrate. In continuous culture, ethanol and lactate were used directly as efficient substrates for sulphate reduction while acetate yielded only slow growth. Glucose was utilised following fermentation to organic acids and therefore had a deleterious effect on pH. Ethanol was selected as the most efficient substrate due to cost and efficient yield of sulphide. On ethanol, the presence of additional carbon sources had no effect on growth or sulphate reduction in batch culture but the presence of complex nitrogen sources (yeast extract or cornsteep) stimulated both. Cornsteep showed the strongest effect and was also preferred on cost grounds. In continuous culture, cornsteep significantly improved the yield of sulphate reduced per unit of ethanol consumed. These results suggest that the most efficient nutrient regime for bioremediation using sulphate-reducing bacteria required both ethanol as carbon source and cornsteep as a complex nitrogen source.  相似文献   

7.
Summary To extend the use of industrial wastes, we have studied the growth of Euglena cells on demineralized whey powder, an industrial dairy waste from cheese making. The demineralized whey powder was solubilized (15 g/l) in 0.04 N HCl and autoclaved for two hours at 120°C. The solution was then brought to pH 3.5 with NH4OH and tested for its ability to support Euglena growth. In the dark, cell densities of 4.5 to 5.5×106 cells/ml were obtained when vitamin B12, thiamine and minerals were added to the hydrolyzed whey solution. Although growth of Euglena is possible on whey, the industrial application may be limited due to the need to hydrolyze the whey and to the low utilization of carbon (20%) as the glucose, but not the galactose, released during hydrolysis is used.  相似文献   

8.
Abstract During fermentation in the human large intestine, terminal oxidative processes may involve the activities of dissimilatory sulphate-reducing bacteria (SRB). Approximately 50% of healthy individuals harbour significant populations of SRB in faeces. In mixed culture, growth of SRB in vitro was modulated by sulphate availability, with sulphated polysaccharides such as mucin, chondroitin sulphate and carrageenan causing increased growth rates and sulphide production when compared with starch, pectin and arabino-galactan. Rates of H2S production were higher among SRB isolated from patients with ulccrative colitis in contrast to those present in healthy volunteers. The majority (up to 92%) of SRB in faecal samples belonged to the genus Desulfovibrio . In vitro studies demonstrated that compared to isolates from healthy subjects. Desulfovibrio desulfuricans from colitic individuals were better able to adapt to high dilution rates, which may be associated with the disease. These findings indicate that the metabolic capabilities of SRB isolated from the human large intestine are not uniform and may respond to the type of substrate available in the gut as well as the rate of passage of digesta.  相似文献   

9.

Lake Velencei (Hungary) is one of the westernmost shallow soda lakes, extending from Eastern Europe to the Carpatian basin. The spatial and temporal distribution of the sediment microbiota, the metabolic potential of bacterial communities and the species composition of the genera Bacillus and Clostridium, as well as sulphate-reducing bacteria (SRB) were investigated regarding the close interactions between the lake sediment and the overlaying water column, the special water chemical parameters, and the extensive reed coverage of the lake. Aerobic microbial activities were tested with community-level physiological profiling (CLPP) using BIOLOG microplates. The quantification of the anaerobic fermentative and sulphate-reducing bacteria was done by the MPN (Most Probable Number) method. The cultivation of bacteria adapted to the special physico-chemical characteristics of the lake was carried out employing selective media. Multivariate analysis of CLPP data indicated that the microbial communities of the sediment separated from that of the water and showed seasonal variations of the utilised carbon sources. The results of the MPN demonstrated that the counts of the fermentative and sulphate-reducing bacteria in the reed rhizosphere were about one order higher than in the sediment. Among the isolated bacterial strains, a large number were characterised as facultative or obligate alkaliphilic and also moderately halophilic. The partial sequencing of 16S rDNA of the selected representatives resulted in species of aerobic bacteria, such as Bacillus pseudofirmus, B. halmapalus, B. cohnii, B. (Marinibacillus) marinus, and anaerobes, such as Clostridium putrificum – sporogenes, C. scatologenes, C. bifermentans, Desulfotomaculum guttoideum, Desulfovibrio alcoholivorans, and Desulfovibrio burkinensis.

  相似文献   

10.
Transfer of broad host-range plasmids to sulphate-reducing bacteria   总被引:3,自引:0,他引:3  
Abstract The broad-host-range, IncQ, plasmid R300B (Sm, Su) has been stably transferred to two strains of sulphate-reducing bacteria ( Desulfovibrio sp. 8301 and Desulfovibrio desulfuricans 8312), using the IncP1 transfer system of the helper plasmid pRK2013 and cocultivation of sulphate-reducing bacteria with facultative anaerobes in media provided with sulphate and nitrate ions as electron acceptors. R300B was transferred at a frequency of 10−2 to 1 per acceptor cell. The SmR marker was expressed in both sulphate-reducing bacteria strains while the SuR was expressed only in strain 8301. R300B can also be transferred back to E. coli strains provided with IncP1 plasmids taking advantage of the retrotransfer ability of these plasmids. This occurs at a frequency up to 10−4 by recipient E. coli cell.  相似文献   

11.
The production of malolactic starter cultures requires the obtention of suitably large biomass at low-cost. In this work it was possible to obtain a good amount of biomass, at laboratory scale, of two enological strains of Lb. plantarum, by formulating a culture medium based on whey permeate (WP), a by-product of the cheese industry usually disposed as waste, when this was supplemented with yeast extract (Y), salts (S) and Tween 80 (T) (WPYST). Bacteria grown in WPYST medium exhibited good tolerance to stress conditions of synthetic wine (pH 3.5, ethanol 13% vol/vol). However, when WPYST was added with 8% vol/vol ethanol, cultures inoculated in synthetic wine, showed a lower viability and capacity to consume L-malic acid than when they were cultured in WPYST without ethanol. Subsequently, strains grown in WPYST were inoculated in sterile wine samples (final stage of alcoholic fermentation) of the red varietals Merlot and Pinot noir, and incubated at laboratory scale. Cultures from WPYST, inoculated in Pinot noir wine, showed a better performance than bacteria grown in MRS broth, and exhibited a consumption of L-malic acid higher than 90%. However, cultures from WPYST or from MRS broth, inoculated in sterile Merlot wine, showed a lower survival. This study allowed the formulation of a low-cost culture medium, based on a by-product of the food industry, which showed to be adequate for the growth of two enological strains of Lb. plantarum, suggesting their potentiality for application in the elaboration of malolactic starter cultures.  相似文献   

12.
The bacteria of the sulphur cycle   总被引:5,自引:0,他引:5  
This paper concentrates on the bacteria involved in the reductions and oxidations of inorganic sulphur compounds under anaerobic conditions. The genera of the dissimilatory sulphate-reducing bacteria known today are discussed with respect to their different capacities to decompose and oxidize various products of fermentative degradations of organic matter. The utilization of molecular hydrogen and formate by sulphate reducers shifts fermentations towards the energetically more favourable formation of acetate. Since acetate amounts to about two-thirds of the degradation products of organic matter, the complete anaerobic oxidation of acetate by several genera of the sulphate-reducing bacteria is an important function for terminal oxidation in sulphate-sufficient environments. The results of pure culture studies agree well with ecological investigations of several authors who showed the significance of sulphate reduction for the complete oxidation of organic matter in anaerobic marine habitats. In the dissimilatory sulphur-reducing bacteria of the genus Desulfuromonas the oxidation of acetate is linked to the reduction of elemental sulphur. Major characteristics of the anaerobic, sulphide-oxidizing phototrophic green and purple sulphur bacteria as well as of some facultative anoxygenic cyanobacteria, are given. By the formation of elemental sulphur and sulphate, these bacteria establish sulphur cycles with the sulphide-forming bacteria. In view of the morphological diversity of the sulphate-reducing bacteria and question of possible evolutionary relations to phototrophic sulphur bacteria is raised.  相似文献   

13.
The long-term safety of final disposal of spent nuclear fuel in the deep geosphere is dependent on stability of biogeochemical conditions at the disposal site. Microbial processes, such as sulphate reduction and methanogenesis, may have profound effects on site biogeochemistry. In this study, sulphate-reducing bacteria and methane-producing archaea were investigated at depths ranging from 68 to 545 m in crystalline rock fractures at an intended spent nuclear fuel disposal site in Olkiluoto, Finland. Denaturing gradient gel electrophoresis detected diverse sulphate-reducing bacterial communities in all samples. Although the number of dsrB gene copies was below 103 copies ml?1 in all analyzed samples according to real-time quantitative PCR, their abundance was highest in samples that had the highest sulphate concentrations. Several distinct mcrA gene fragments were also recovered from most of the analyzed samples by cloning, although the number of methanogens was lower than that of sulphate-reducing bacteria when measured by mcrA-targeted quantitative PCR. The detected gene fragments were most closely related to sequences obtained from aquatic and deep subsurface environments. Results imply that sulphate reduction, methanogenesis, and anaerobic methane oxidation may all take place in the Olkiluoto deep geobiosphere.  相似文献   

14.
Summary Bacterial sulphate reduction and the interaction between sulphate reduction and methane production was studied in an unadapted and sulphate-adapted thermophilic anaerobic sludge digestor. Addition of sulphate to a concentration of 5 mm (100 times the background level) did not influence gas production or volatile fatty acid concentration compared to the control digestor. When sulphate reduction was not limited by the sulphate concentration, the sulphate-adapted digestor had a sulphate reduction rate of 910 mol l–1 day compared with 17 mol l–1 day in the control digestor. The results indicate that the potential for sulphate reduction is low in a thermophilic sewage sludge digestor receiving a low sulphate concentration. Counts of sulphate-reducing bacteria and methanogens showed that sulphate-reducing bacteria were found only in significant numbers in the sulphate-adapted digestor and only with H2/CO2 as substrate. Only low numbers of acetate-utilizing sulphate-reducing bacteria were found in both digestors. When using radio-labelled acetate, the relative percentage of 2-labelled acetate converted to CO2 was two to four times higher in the sulphate-adapted digestor compared to the control digestor. These results suggest that oxidation of acetate seems to play a larger role in the sulphate-adapted digestor.Offprint requests to: B. K. Ahring  相似文献   

15.
Waste streams from industrial processes such as metal smelting or mining contain high concentrations of sulfate and metals with low pH. Dissimilatory sulfate reduction carried out by sulfate-reducing bacteria (SRB) at low pH can combine sulfate reduction with metal-sulfide precipitation and thus open possibilities for selective metal recovery. This study investigates the microbial diversity and population changes of a single-stage sulfidogenic gas-lift bioreactor treating synthetic zinc-rich waste water at pH 5.5 by denaturing gradient gel electrophoresis of 16S rRNA gene fragments and quantitative polymerase chain reaction. The results indicate the presence of a diverse range of phylogenetic groups with the predominant microbial populations belonging to the Desulfovibrionaceae from δ-Proteobacteria. Desulfovibrio desulfuricans-like populations were the most abundant among the SRB during the three stable phases of varying sulfide and zinc concentrations and increased from 13% to 54% of the total bacterial populations over time. The second largest group was Desulfovibrio marrakechensis-like SRB that increased from 1% to about 10% with decreasing sulfide concentrations. Desulfovibrio aminophilus-like populations were the only SRB to decrease in numbers with decreasing sulfide concentrations. However, their population was <1% of the total bacterial population in the reactor at all analyzed time points. The number of dissimilatory sulfate reductase (DsrA) gene copies per number of SRB cells decreased from 3.5 to 2 DsrA copies when the sulfide concentration was reduced, suggesting that the cells' sulfate-reducing capacity was also lowered. This study has identified the species present in a single-stage sulfidogenic bioreactor treating zinc-rich wastewater at low pH and provides insights into the microbial ecology of this biotechnological process.  相似文献   

16.
The dissimilatory sulphate-reducing bacterium Desulfovibrio gigas, frequently sub-cultured, often contained spherical granules which stained metachromatically with some basic dyes. The granules were examined in situ by transmission electron microscopy of whole organisms and thin sections. The granules were isolated from broken bacteria as a water-insoluble, non-crystalline, white material containing magnesium, phosphorus and organic carbon, but devoid of sulphur and nitrogen. The molar ratio of phosphorus to magnesium (1 to 17) was close to the proportions in magnesium tripolyphosphate. Infrared absorption spectra for the white material and magnesium tripolyphosphate were similar.  相似文献   

17.
A culture-dependent study was performed with the aim of assessing the carbon, electron and Fe(III) sources used for the dissimilatory Fe(III) reduction pathway and the diversity of culturable Fe(III)-reducers in the anoxic zone of the meromictic Lake Pavin. This metabolic pathway was investigated in enrichment cultures inoculated with water samples collected at 70 m depth in the anoxic zone of Lake Pavin. Combinations of different media, organic acids, and incubation gas phases were performed. The potential for Fe(III) reduction in the different growth conditions was assessed by measuring the accumulation of Fe(II) overtime. Bacterial community structure was determined in each growth conditions by Temporal Temperature gradient Gel Electrophoresis (TTGE) profiles of 16S rDNA genes and bands of interest in positive enrichments were sequenced. Comparisons of bacterial community structure between growth conditions revealed that the electron donor, the basal media as well as the Fe(III) source yielded to the selection of different bacterial populations, suggesting that Fe(III) reducers occupy different ecological niches in the anoxic zone of Lake Pavin. Facultative Fe(III) reducers, such as fermentative (e.g., Pseudomonas, Clostridium) and sulphate-reducing (e.g., Desulfovibrio sp.) bacteria, were retrieved in enrichments but well-known obligatory Fe(III) reducers (e.g., Geobacter) were not detected. A greater Fe(III) reduction was noted under H2:CO2 gas phase, suggesting that H2 is used as an electron donor for Fe(III) reduction. Acetate was not used as a precursor for this terminal electron-accepting process, and a high Fe(III) reduction was observed with fumarate provided as the electron donor and carbon sources suggesting that this metabolite may be energetically more beneficial for Fe(III)-reducers.  相似文献   

18.
Viable counts of sulphate-reducing bacteria, able to use a range of different growth substrates were determined in sediments from two Sea Lochs (Etive and Eil) and an estuarine site (Tay), in Scotland. The composition of the sulphate-reducing bacterial population, in terms of substrate utilization, broadly corresponded to the in situ substrates for sulphate reduction and concentration of substrates at each site. Addition of acetate, lactate, propionate, butyrate, hydrogen and glutamate/serine (20 mM) to replicate slurries from each site resulted in stimulation of the corresponding population of sulphate-reducing bacteria and the in situ rates of sulphate reduction. The metabolism of the added substrates and changes in bacterial phospholipid fatty acids (PLFA) were quantified. With the exception of acetate and hydrogen, added substrates were incompletely oxidised, producing a mixture of further substrates, which predominantly were sequentially oxidised, and resulted in the stimulation of a mixed population of sulphate-reducing bacteria. There were significant changes in the PLFA of slurries with added substrate compared to controls. Acetate was completely removed at all sites and the small increase in even chain PLFA together with the absence of stimulation of any other biomarker, indicated that acetate was oxidised by sulphate-reducing bacteria distinctly different from those using other substrates. A biomarker for Desulfobacter, 10 Methyl 16:0, was not stimulated in any of the acetate slurries or in slurries where acetate was produced. Biomarkers for the propionate utilizing Desulfobulbus sp (17:1w6, 15:1w6) were always stimulated in propionate slurries and also in lactate slurries, where partial lactate fermentation produced propionate and acetate. In lactate and glutamate / serine slurries from the Tay estuary and lactate and hydrogen slurries from Loch Etive the biomarker for Desulfovibrio sp (i17:1w7) as well as those for Desulfobulbus were stimulated. This provides direct evidence for the significance of Desulfovibrio sp. within sediment slurries and demonstrates the competitive interaction between members of this genus and Desulfobulbus sp. for lactate, hydrogen and amino acid metabolism. At the estuarine site, sulphate reduction was limited at higher sulphate concentrations (about 3.5 mM) than the Sea Loch sites (<2 mM) and this had a significant effect on propionate and butyrate metabolism, as well as on methane production. These results demonstrate that although the sulphate-reducing bacterial population at each site could metabolise identical substrates, the types of sulphate-reducing bacteria involved and their sulphate thresholds were characteristically different.  相似文献   

19.
Bacteria from a methanogenic wastewater population could be separated with a self-generating density gradient of Percoll. The separation was performed by centrifugation for 30 min at 30000 g in a simple angle-head rotor. Three types of bacteria were concentrated to apparent homogeneity in different bands; these were attributed to the methanogens Methanosarcina and Methanothrix , and to the dissimilatory sulphate-reducing bacterium Desulfovibrio. The described technique will contribute to a rapid diagnosis of the bacterial types that are active in waste-water treatment.  相似文献   

20.
DsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction. Here, we studied whether DsrC also plays a role during fermentative growth of Desulfovibrio vulgaris Hildenborough, by studying two strains where the functionality of DsrC is impaired by a lower level of expression (IPFG07) and additionally by the absence of one conserved Cys (IPFG09). Growth studies coupled with metabolite and proteomic analyses reveal that fermentation leads to lower levels of DsrC, but impairment of its function results in reduced growth by fermentation and a shift towards more fermentative metabolism during sulfate respiration. In both respiratory and fermentative conditions, there is increased abundance of the FlxABCD–HdrABC complex and Adh alcohol dehydrogenase in IPFG09 versus the wild type, which is reflected in higher production of ethanol. Pull-down experiments confirmed a direct interaction between DsrC and the FlxABCD–HdrABC complex, through the HdrB subunit. Dissimilatory sulfur metabolism, where sulfur compounds are used for energy generation, is a key process in the ecology of anoxic environments, and is more widespread among bacteria than previously believed. Two central proteins for this type of metabolism are DsrAB dissimilatory sulfite reductase and its co-substrate DsrC. Using physiological, proteomic and biochemical studies of Desulfovibrio vulgaris Hildenborough and mutants affected in DsrC functionality, we show that DsrC is also relevant for fermentative growth of this model organism and that it interacts directly with the soluble FlxABCD-HdrABC complex that links the NAD(H) pool with dissimilatory sulfite reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号