首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inspiratory muscles can be fatigued by repetitive contractions characterized by high force (inspiratory resistive loads) or high velocities of shortening (hyperpnea). The effects of fatigue induced by inspiratory resistive loaded breathing (pressure tasks) or by eucapnic hyperpnea (flow tasks) on maximal inspiratory pressure-flow capacity and rib cage and diaphragm strength were examined in five healthy adult subjects. Tasks consisted of sustaining an assigned breathing frequency, duty cycle, and either a "pressure-time product" of esophageal pressure (for the pressure tasks) or peak inspiratory flow rate (for the flow tasks). Esophageal pressure was measured during maximal inspiratory efforts against a closed glottis (Pesmax), maximal transdiaphragmatic pressure was measured during open-glottis expulsive maneuvers (Pdimax), and maximal inspiratory flow (VImax) was measured during maximal inspiratory efforts with no added external resistance before and after fatiguing pressure and flow tasks. The reduction in Pesmax) with pressure fatigue (-25 +/- 7%) was significantly greater than the change in Pesmax with flow fatigue (-8 +/- 8%, P less than 0.01). In contrast, the reductions in Pdimax (-11 +/- 8%) and VImax (-16 +/- 3%) with flow fatigue were greater than the changes in Pdimax (-0.6 +/- 4%, P less than 0.05) or VImax (-3 +/- 4%, P less than 0.05) with pressure fatigue. We conclude that respiratory muscle performance is dependent not only on the presence of fatigue but whether fatigue was induced by pressure tasks or flow tasks. The specific impairment of Pesmax and not of Pdimax or flow with pressure fatigue may reflect selective fatigue of the rib cage muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We looked for evidence of changes in lung elastic recoil and of inspiratory muscle fatigue at maximal exercise in seven normal subjects. Esophageal pressure, flow, and volume were measured during spontaneous breathing at increasing levels of cycle exercise to maximum. Total lung capacity (TLC) was determined at rest and immediately before exercise termination using a N2-washout technique. Maximal inspiratory pressure and inspiratory capacity were measured at 1-min intervals. The time course of instantaneous dynamic pressure of respiratory muscles (Pmus) was calculated for the spontaneous breaths immediately preceding exercise termination. TLC volume and lung elastic recoil at TLC were the same at the end of exercise as at rest. Maximum static inspiratory pressures at exercise termination were not reduced. However, mean Pmus of spontaneous breaths at end exercise exceeded 15% of maximum inspiratory pressure in five of the subjects. We conclude that lung elastic recoil is unchanged even at maximal exercise and that, while inspiratory muscles operate within a potentially fatiguing range, the high levels of ventilation observed during maximal exercise are not maintained for a sufficient time to result in mechanical fatigue.  相似文献   

3.
Respiratory muscle weakness is common in children with neuromuscular disease (NMD). We hypothesized that weakness puts them at risk for respiratory muscle fatigue, a harbinger of chronic respiratory failure. We therefore measured a noninvasive index of respiratory muscle fatigue, the tension-time index of the respiratory muscles (TT(mus)), in 11 children with NMD and 13 control subjects. Spirometric flow rates and maximal inspiratory pressure were significantly lower in the NMD group than in controls (43 +/- 23 vs. 99 +/- 21 cmH2O, P < 0.001). The mean TT(mus) was significantly higher in the NMD group than in controls (0.205 +/- 0.117 vs. 0.054 +/- 0.021, P < 0.001). The increase in TT(mus) was primarily due to an increase in the ratio of average mean inspiratory pressure to maximal inspiratory pressure, indicating decreased respiratory muscle strength reserve. We found a significant correlation between TT(mus) and the residual volume-to-total lung capacity ratio (r = 0.504, P = 0.03) and a negative correlation between TT(mus) and forced expiratory volume in 1 s (r = -0.704, P < 0.001). In conclusion, children with NMD are prone to respiratory muscle fatigue. TT(mus) may be useful in assessing tolerance during weaning from mechanical ventilation, identifying impending respiratory failure, and aiding in the decision to institute therapies.  相似文献   

4.
Because the inspiratory rib cage muscles are recruited during inspiratory resistive loaded breathing, we hypothesized that such loading would preferentially fatigue the rib cage muscles. We measured the pressure developed by the inspiratory rib cage muscles during maximal static inspiratory maneuvers (Pinsp) and the pressure developed by the diaphragm during maximal static open-glottis expulsive maneuvers (Pdimax) in four human subjects, both before and after fatigue induced by an inspiratory resistive loaded breathing task. Tasks consisted of maintaining a target esophageal pressure, breathing frequency, and duty cycle for 3-5 min, after which the subjects maintained the highest esophageal pressure possible for an additional 5 min. After loading, Pinsp decreased in all subjects [control, -128 +/- 14 (SD) cmH2O; with fatigue, -102 +/- 18 cmH2O; P less than 0.001, paired t test]. Pdimax was unchanged (control, -192 +/- 23 cmH2O; fatigue, -195 +/- 27 cmH2O). These data suggest that 1) inability to sustain the target during loading resulted from fatigue of the inspiratory rib cage muscles, not diaphragm, and 2) simultaneous measurement of Pinsp and Pdimax may be useful in partitioning muscle fatigue into rib cage and diaphragmatic components.  相似文献   

5.
Relative strengths of the chest wall muscles   总被引:1,自引:0,他引:1  
We hypothesized that during maximal respiratory efforts involving the simultaneous activation of two or more chest wall muscles (or muscle groups), differences in muscle strength require that the activity of the stronger muscle be submaximal to prevent changes in thoracoabdominal configuration. Furthermore we predicted that maximal respiratory pressures are limited by the strength of the weaker muscle involved. To test these hypotheses, we measured the pleural pressure, abdominal pressure (Pab), and transdiaphragmatic pressure (Pdi) generated during maximal inspiratory, open-glottis and closed-glottis expulsive, and combined inspiratory and expulsive maneuvers in four adults. We then determined the activation of the diaphragm and abdominal muscles during selected maximal respiratory maneuvers, using electromyography and phrenic nerve stimulation. In all subjects, the Pdi generated during maximal inspiratory efforts was significantly lower than the Pdi generated during open-glottis expulsive or combined efforts, suggesting that rib cage, not diaphragm, strength limits maximal inspiratory pressure. Similarly, at high lung volumes, the Pab generated during closed-glottis expulsive efforts was significantly greater than that generated during open-glottis efforts, suggesting that the latter pressure is limited by diaphragm, not abdominal muscle, strength. As predicted, diaphragm activation was submaximal during maximal inspiratory efforts, and abdominal muscle activation was submaximal during open-glottis expulsive efforts at midlung volume. Additionally, assisting the inspiratory muscles of the rib cage with negative body-surface pressure significantly increased maximal inspiratory pressure, whereas loading the rib cage muscles with rib cage compression decreased maximal inspiratory pressure. We conclude that activation of the chest wall muscles during static respiratory efforts is determined by the relative strengths and mechanical advantage of the muscles involved.  相似文献   

6.
The purpose of this study was to determine whether induction of either inspiratory muscle fatigue (expt 1) or diaphragmatic fatigue (expt 2) would alter the breathing pattern response to large inspiratory resistive loads. In particular, we wondered whether induction of fatigue would result in rapid shallow breathing during inspiratory resistive loading. The breathing pattern during inspiratory resistive loading was measured for 5 min in the absence of fatigue (control) and immediately after induction of either inspiratory muscle fatigue or diaphragmatic fatigue. Data were separately analyzed for the 1st and 5th min of resistive loading to distinguish between immediate and sustained effects. Fatigue was achieved by having the subjects breathe against an inspiratory threshold load while generating a predetermined fraction of either the maximal mouth pressure or maximal transdiaphragmatic pressure until they could no longer reach the target pressure. Compared with control, there were no significant alterations in breathing pattern after induction of fatigue during either the 1st or 5th min of resistive loading, regardless of whether fatigue was induced in the majority of the inspiratory muscles or just in the diaphragm. We conclude that the development of inspiratory muscle fatigue does not alter the breathing pattern response to large inspiratory resistive loads.  相似文献   

7.
The O2 consumption of the respiratory muscles (VO2resp), work of breathing, and the time integral of the transdiaphragmatic pressure (TTdi) were measured in four normal subjects breathing against inspiratory resistance. A total of 39 runs were performed at mean tidal transdiaphragmatic pressures (Pdi) ranging from 15 to 53 cmH2O, respiratory frequencies from 3.5 to 22 breaths/min, and inspiratory time durations (TI) from 32 to 76% of the total breath duration. Each run was maintained from 8 to 17 min and the above parameters were kept constant by the subject via visual feedback of Pdi and TI with an oscilloscope. Most of the runs (36 of 39) were performed at TTdi values below those known to produce respiratory muscle fatigue. We found a strong linear correlation between the VO2resp and the TTdi (r = 0.74, P less than 0.001) and a weaker correlation between VO2resp and W (r = 0.31, P less than 0.05). These data suggest that TTdi is a good estimator of VO2resp over a wide range of respiratory patterns during inspiratory resistance breathing. The high variability seen in respiratory muscle efficiency during resistive breathing may be due to W not being a good indicator of the energy consumed by the respiratory muscles.  相似文献   

8.
The present study examined respiratory muscle endurance and the magnitude of the sense of effort during inspiratory threshold loading following a dose of caffeine (600 mg) previously observed to increase diaphragm strength. Experiments were performed on 12 normal subjects. Respiratory muscle endurance at a given level of load was assessed from the time of exhaustion and from the time course of the change in the power spectrum (centroid frequency) of the diaphragm electromyogram (EMG). The intensity of the sense of effort during loaded breathing was evaluated using a category (Borg) scale. Increasingly severe loads were associated with more rapid onset of fatigue. At a given load, caffeine prolonged the time to exhaustion and decreased the rate of fall of the centroid frequency of the diaphragm EMG. Caffeine also decreased the sense of effort during loaded breathing in 9 of 11 subjects. Changes in respiratory muscle endurance after caffeine administration were not explained by changes in the pressure-time index of the respiratory muscles or the pattern of thoracoabdominal movement. We conclude that caffeine enhances inspiratory muscle endurance, while concomitantly reducing the sense of effort associated with fatiguing inspiratory muscle contractions.  相似文献   

9.
Expiratory resistive loading (ERL) is used by chronic obstructive pulmonary disease (COPD) patients to improve respiratory function. We, therefore, used a noninvasive tension-time index of the inspiratory muscles (TT(mus) = I/PI(max) x TI/TT, where I is mean inspiratory pressure estimated from the mouth occlusion pressure, PI(max) is maximal inspiratory pressure, TI is inspiratory time, and TT is total respiratory cycle time) to better define the effect of ERL on COPD patients. To accomplish this, we measured airway pressures, mouth occlusion pressure, respiratory cycle flow rates, and functional residual capacity (FRC) in 14 COPD patients and 10 normal subjects with and without the application of ERL. TT(mus) was then calculated and found to drop in both COPD and normal subjects (P<0.05). The decline in TT(mus) in both groups resulted solely from a prolongation of expiratory time with ERL (P<0.001 for COPD, P<0.05 for normal subjects). In contrast to the COPD patients, normal subjects had an elevation in I and FRC, thus minimizing the decline in TT(mus). In conclusion, ERL reduces the potential for inspiratory muscle fatigue in COPD by reducing TI/TT without affecting FRC and I.  相似文献   

10.
In nine anesthetized supine spontaneously breathing dogs, we compared moving average electromyograms (EMGs) of the costal diaphragm and the third parasternal intercostal muscles with their respective respiratory changes in length (measured by sonomicrometry). During resting O2 breathing the pattern of diaphragm and intercostal muscle inspiratory shortening paralleled the gradually incrementing pattern of their moving average EMGs. Progressive hypercapnia caused progressive increases in the amount and velocity of respiratory muscle inspiratory shortening. For both muscles there were linear relationships during the course of CO2 rebreathing between their peak moving average EMGs and total inspiratory shortening and between tidal volume and total inspiratory shortening. During single-breath airway occlusions, the electrical activity of both the diaphragm and intercostal muscles increased, but there were decreases in their tidal shortening. The extent of muscle shortening during occluded breaths was increased by hypercapnia, so that both muscles shortened more during occluded breaths under hypercapnic conditions (PCO2 up to 90 Torr) than during unoccluded breaths under normocapnic conditions. These results suggest that for the costal diaphragm and parasternal intercostal muscles there is a close relationship between their electrical and mechanical behavior during CO2 rebreathing, this relationship is substantially altered by occluding the airway for a single breath, and thoracic respiratory muscles do not contract quasi-isometrically during occluded breaths.  相似文献   

11.
Studies of sleep influences on human pharyngeal and other respiratory muscles suggest that the activity of these muscles may be affected by non-rapid-eye-movement (NREM) sleep in a nonuniform manner. This variable sleep response may relate to the pattern of activation of the muscle (inspiratory phasic vs. tonic) and peripheral events occurring in the airway. Furthermore, the ability of these muscles to respond to respiratory stimuli during NREM sleep may also differ. To systematically investigate the effect of NREM sleep on respiratory muscle activity, we studied two tonic muscles [tensor palatini (TP), masseter (M)] and two inspiratory phasic ones [genioglossus (GG), diaphragm (D)], also measuring the response of these muscles to inspiratory resistive loading (12 cmH2O.l-1.s) during wakefulness and NREM sleep. Seven normal male subjects were studied on a single night with intramuscular electrodes placed in the TP and GG and surface electrodes placed over the D and M. Sleep stage, inspiratory airflow, and moving time average electromyograph (EMG) of the above four muscles were continuously recorded. The EMG of both tonic muscles fell significantly (P less than 0.05) during NREM sleep [TP awake, 4.3 +/- 0.05 (SE) arbitrary units, stage 2, 1.1 +/- 0.2; stage 3/4, 1.0 +/- 0.2. Masseter awake, 4.8 +/- 0.6; stage 2, 3.3 +/- 0.5; stage 3/4, 3.1 +/- 0.5]. On the other hand, the peak phasic EMG of both inspiratory phasic muscles (GG and D) was well maintained.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The changes in thoracic and abdominal pressure that generate vomiting are produced by coordinated action of the major respiratory muscles. During vomiting, the diaphragm and external intercostal (inspiratory) muscles co-contract with abdominal (expiratory) muscles in a series of bursts of activity that culminates in expulsion. Internal intercostal (expiratory) muscles contract out of phase with these muscles during retching and are inactive during expulsion. The periesophageal portion of the diaphragm relaxes during expulsion, presumably facilitating rostral movement of gastric contents. Recent studies have begun to examine to what extent medullary respiratory neurons are involved in the control of these muscles during vomiting. Bulbospinal expiratory neurons in the ventral respiratory group caudal to the obex discharge at the appropriate time during (fictive) vomiting to activate either abdominal or internal intercostal motoneurons. The pathways that drive phrenic and external intercostal motoneurons during vomiting have yet to be identified. Most bulbospinal inspiratory neurons in the dorsal and ventral respiratory groups do not have the appropriate response pattern to initiate activation of these motoneurons during (fictive) vomiting. Relaxation of the periesophageal diaphragm during vomiting could be brought about, at least in part, by reduced firing of bulbospinal inspiratory neurons.  相似文献   

13.
To study the changes in ventilation induced by inspiratory flow-resistive (IFR) loads, we applied moderate and severe IFR loads in chronically instrumented and awake sheep. We measured inspired minute ventilation (VI), ventilatory pattern [inspiratory time (TI), expiratory time (TE), respiratory cycle time (TT), tidal volume (VT), mean inspiratory flow (VT/TI), and respiratory duty cycle (TI/TT)], transdiaphragmatic pressure (Pdi), functional residual capacity (FRC), blood gas tensions, and recorded diaphragmatic electromyogram. With both moderate and severe loads, Pdi, TI, and TI/TT increased, TE, TT, VT, VT/TI, and VI decreased, and hypercapnia ensued. FRC did not change significantly with moderate loads but decreased by 30-40% with severe loads. With severe loads, arterial PCO2 (PaCO2) stabilized at approximately 60 Torr within 10-15 min and rose further to levels exceeding 80 Torr when Pdi dropped. This was associated with a lengthening in TE and a decrease in breathing frequency, VI, and TI/TT. We conclude that 1) timing and volume responses to IFR loads are not sufficient to prevent alveolar hypoventilation, 2) with severe loads the considerable increase in Pdi, TI/TT, and PaCO2 may reduce respiratory muscle endurance, and 3) the changes in ventilation associated with neuromuscular fatigue occur after the drop in Pdi. We believe that these ventilatory changes are dictated by the mechanical capability of the respiratory muscles or induced by a decrease in central neural output to these muscles or both.  相似文献   

14.
A mathematical model was analyzed to obtain a quantitative and testable representation of the long-standing hypothesis that the respiratory muscles drive the chest wall along the trajectory for which the work of breathing is minimal. The respiratory system was modeled as a linear elastic system that can be expanded either by pressure applied at the airway opening (passive inflation) or by active forces in respiratory muscles (active inflation). The work of active expansion was calculated, and the distribution of muscle forces that produces a given lung expansion with minimal work was computed. The calculated expression for muscle force is complicated, but the corresponding kinematics of muscle shortening is simple: active inspiratory muscles shorten more during active inflation than during passive inflation, and the ratio of active to passive shortening is the same for all active muscles. In addition, the ratio of the minimal work done by respiratory muscles during active inflation to work required for passive inflation is the same as the ratio of active to passive muscle shortening. The minimal-work hypothesis was tested by measurement of the passive and active shortening of the internal intercostal muscles in the parasternal region of two interspaces in five supine anesthetized dogs. Fractional changes in muscle length were measured by sonomicrometry during passive inflation, during quiet breathing, and during forceful inspiratory efforts against a closed airway. Active muscle shortening during quiet breathing was, on average, 70% greater than passive shortening, but it was only weakly correlated with passive shortening. Active shortening inferred from the data for more forceful inspiratory efforts was approximately 40% greater than passive shortening and was highly correlated with passive shortening. These data support the hypothesis that, during forceful inspiratory efforts, muscle activation is coordinated so as to expand the chest wall with minimal work.  相似文献   

15.
In experiments on anesthetized cats, switch on of additional inelastic respiration resistance (resistive load) produced, apart from slowing of the respiratory flows, an increase in the activity of motoneurons and inspiratory intrathoracic pressure. Bilateral vagotomy resulted in disappearance of resistive load-induced elevation of the phrenic nerve activity, but did not abolish the growth of the inspiratory effort. Analysis of the evidence obtained indicates that activation of phrenic motoneurons associated with increased respiration resistance is underlain by prolongation of the inspiratory phase that is consequent on relaxation of the inspiratory inhibition. It is suggested that, in addition to the mechanism depicted, the compensatory reaction to the resistive load involves, apart from diaphragm participation, other inspiratory muscles as well as enhanced contractions of respiratory muscles provided by the properties of muscular fiber.  相似文献   

16.
Expiratory muscle fatigue in normal subjects   总被引:4,自引:0,他引:4  
We examined expiratory muscle fatigue during expiratory resistive loading in 11 normal subjects. Subjects breathed against expiratory resistances at their own breathing frequency and tidal volume until exhaustion or for 60 min. Respiratory muscle strength was assessed from both the maximum static expiratory and inspiratory mouth pressures (PEmax and PImax). At the lowest resistance, PEmax and PImax measured after completion of the expiratory loaded breathing were not different from control values. With higher resistance, both PEmax and PImax were decreased (P less than 0.05), and the decrease lasted for greater than or equal to 60 min. The electromyogram high-to-low frequency power ratio for the rectus abdominis muscle decreased progressively during loading (P less than 0.01), but the integrated EMG activity did not change during recovery. Transdiaphragmatic pressure during loading was increased 3.6-fold compared with control (P less than 0.05). These findings suggest that expiratory resistive loaded breathing induces muscle fatigue in both expiratory and inspiratory muscles. Fatigue of the expiratory muscles can be attributed directly to the high work load and that of the inspiratory muscles may be related to increased work due to shortened inspiratory time.  相似文献   

17.
Effect of inspiratory muscle fatigue on breathing pattern   总被引:2,自引:0,他引:2  
Our aim was to determine whether inspiratory muscle fatigue changes breathing pattern and whether any changes seen occur before mechanical fatigue develops. Nine normal subjects breathed through a variable inspiratory resistance with a predetermined mouth pressure (Pm) during inspiration and a fixed ratio of inspiratory time to total breath duration. Breathing pattern after resistive breathing (recovery breathing pattern) was compared with breathing pattern at rest and during CO2 rebreathing (control breathing pattern) for each subject. Relative rapid shallow breathing was seen after mechanical fatigue and also in experiments with electromyogram evidence of diaphragmatic fatigue where Pm was maintained at the predetermined level during the period of resistive breathing. In contrast there was no significant difference between recovery and control breathing patterns when neither mechanical nor electromyogram fatigue was seen. It is suggested that breathing pattern after inspiratory muscle fatigue changes in order to minimize respiratory sensation.  相似文献   

18.
A study involving nine healthy males was conducted to determine the developmental rate of inspiratory muscle fatigue during resistive loads under normoxic and hypoxic conditions. The subjects aged 19 to 38 years performed a bicycle exercise test of increasing power during an exhaustive inspiratory–expiratory resistive load of 40 cm water column/l s–1 inhaling air or oxygen. The volumetric and temporal respiratory parameters, the partial CO2 pressure in the alveolar gas, the total force of inspiratory muscle contractions, the electrical activity of parasternal muscles (EMG), and the initial inspiratory activity were recorded. The degree of inspiratory muscle fatigue was assessed by the tension–time index P m/P m max T I/T T as well as by the ratio of the mean amplitudes of the EMG-signal spectrum in the high-frequency (H) range to the mean spectrum amplitudes in the low-frequency (L) range (H/L). It was established that human working capacity during increasing muscular loads against the background of highly resistive breathing was not a function of the oxygen content in the inhalation mixtures within 21 to 100%; i.e., the maximal power of the work done did not significantly differ. It was shown that pulmonary ventilation, the force generated by inspiratory muscles, the breathing effort values, the initial inspiratory activity value, and the tension–time index increased in parallel with the intensity of the exercise when both air and oxygen were inhaled. The P m/P m max T I/T T values in the last minutes of the muscular load significantly exceeded the fatigue zone range, attaining 0.25 to 0.45 in different subjects. By the moment of refusal to continue the work, the H/L ratio had decreased by an average of 36% when air and oxygen were inhaled. The limitation of the physical working capacity of a healthy individual during an exhaustive resistive load is considered to be linked to inspiratory muscle fatigue developing at an equal rate under both normoxic and hyperoxic conditions. An impairment of the arterial blood supply to inspiratory muscles due to occlusion of the intramuscular vessels during intense muscular contractions and a considerable shortening of the time of the relaxation of the respiratory muscles in the expiratory phase is supposed to occur in forced respiration with an additional gas flow obstruction. The fact of the alternation of the electrical activity between the parasternal and other inspiratory muscles within individual inspiratory phases combined with resistive and physical loads is established, which may serve as one of the signs of inspiratory muscle fatigue.  相似文献   

19.
Regulatory polypeptide leptin, apart from its well-known hypothalamic effects, stimulates ventilation. The present study on anaesthetised rats was undertaken to elucidate the respiratory effects of 10(-10)-10(-4) M leptin microinjected into the solitary tract nucleus, containing a high concentration of leptin receptors. Injections of 10(-8)-10(-4) M leptin induced dose-dependent increase in ventilation, tidal volume and electric activity of inspiratory muscles; 10(-6) M leptin additionally induced a short-term increase in respiratory frequency and a shortening of both inspiratory and expiratory duration. The respiratory responses to leptin is also characterised by appearance of sighs: deep and prolonged inspirations associated with an augmented burst in the activity of the inspiratory muscles and prolonged post-sigh inter-burst interval. The results taken together with evidence of high concentration of specific leptin ObRb-receptor in the solitary tract nucleus suggest involvement of endogenous leptin in the control of breathing via dorsal structures of the respiratory center.  相似文献   

20.
Exercise-induced respiratory muscle fatigue: implications for performance.   总被引:1,自引:0,他引:1  
It is commonly held that the respiratory system has ample capacity relative to the demand for maximal O(2) and CO(2) transport in healthy humans exercising near sea level. However, this situation may not apply during heavy-intensity, sustained exercise where exercise may encroach on the capacity of the respiratory system. Nerve stimulation techniques have provided objective evidence that the diaphragm and abdominal muscles are susceptible to fatigue with heavy, sustained exercise. The fatigue appears to be due to elevated levels of respiratory muscle work combined with an increased competition for blood flow with limb locomotor muscles. When respiratory muscles are prefatigued using voluntary respiratory maneuvers, time to exhaustion during subsequent exercise is decreased. Partially unloading the respiratory muscles during heavy exercise using low-density gas mixtures or mechanical ventilation can prevent exercise-induced diaphragm fatigue and increase exercise time to exhaustion. Collectively, these findings suggest that respiratory muscle fatigue may be involved in limiting exercise tolerance or that other factors, including alterations in the sensation of dyspnea or mechanical load, may be important. The major consequence of respiratory muscle fatigue is an increased sympathetic vasoconstrictor outflow to working skeletal muscle through a respiratory muscle metaboreflex, thereby reducing limb blood flow and increasing the severity of exercise-induced locomotor muscle fatigue. An increase in limb locomotor muscle fatigue may play a pivotal role in determining exercise tolerance through a direct effect on muscle force output and a feedback effect on effort perception, causing reduced motor output to the working limb muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号