首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Selection of habitat to avoid predation may affect the diet of young-of-year (YOY) lake trout (Salvelinus namaycush). YOY lake trout may use inshore habitat to avoid predation; this habitat may be sub-optimal for growth. To test this, YOY lake trout were penned in nearshore and offshore pelagic areas of two arctic lakes. Toolik Lake had a lake trout population, the other lake, S6, did not. YOY lake trout in Toolik Lake lost weight, but those offshore lost less weight. The YOY lake trout in Lake S6 gained weight and those offshore gained more weight. The primary diet item of the YOY lake trout in both lakes during this experiment was the zooplankter Diaptomis probilofensis; it was also one of the most abundant species. However, its density inshore in Lake S6 was similar to inshore and offshore densities in Toolik Lake. The increased availability of alternative zooplankton prey in Lake S6 may account for the growth differential of YOY lake trout in Lake S6 relative to Toolik Lake. Bioenergetic modeling of YOY lake trout suggests that growth similar to that in the offshore of Lake S6 would be necessary for successful recruitment. If the reduced zooplankton availability in Toolik Lake leads to the reduced growth of YOY in the inshore and offshore pelagic areas, then these fish will be more susceptable to winter predation/starvation. For YOY lake trout to survive in Toolik Lake they most likely shift to feeding on benthic prey before the end of their first summer. Dept. of Chemical Engineering  相似文献   

2.
The presence of and mechanisms behind density-dependent growth and resource limitation in larval and juvenile stages of organisms with high mortality such as fish are much debated. We compare observed consumption and growth rates with maximum consumption and growth rates to study the extent of resource limitation in young-of-the-year (YOY) roach (Rutilus rutilus) and perch (Perca fluviatilis). Diet, habitat use, consumption rate and growth rate were measured under varying YOY fish densities over 2 years in four lakes. In the first year, YOY roach and perch were studied under allopatric conditions. Experimental addition of perch roe in the second year also allowed study of YOY of the two species under sympatric conditions in two of the lakes. The diet of YOY roach was dominated by cladoceran zooplankton and YOY roach habitat use was restricted to the shore region in both years. This restricted habitat use did not involve any cost in foraging gain in the first year as consumption and growth rates were very close to maximum rates. During the second year, when the two species coexisted, resources were limited in late season, more so in the littoral than in the pelagic habitat in one lake while the reverse was the case in the other lake. The diet of YOY perch was also dominated by zooplankton, and with increasing perch size the proportion of macroinvertebrate prey in the diet increased. After hatching, YOY perch first utilized the pelagic habitat restricting their habitat use to the shore after 1 to several weeks in the pelagic zone. During the larval period, perch were not resource limited whereas juvenile perch were resource limited in both years. The fact that YOY perch were more resource limited than YOY roach was related to the higher handling capacity and lower attack rate of perch relative to roach, rendering perch more prone to resource limitation. Estimates of resource limitation based on consumption rates and growth rates yielded similar results. This supports the adequacy of our approach to measure resource limitation and suggests that this method is useful for studying resource limitation in organisms with indeterminate growth. Our results support the view that density-dependent growth is rare in larval stages. We suggest that density-dependent growth was absent because larval perch and roach were feeding at maximum levels over a wide range of larvae densities. Received: 14 June 1999 / Accepted: 29 October 1999  相似文献   

3.
The degree to which growth in early life stages of animals is regulated via density‐dependent feedbacks through prey resources is much debated. Here we have studied the influence of size‐ and density‐dependent mechanisms as well as size‐selective predation pressure by cannibalistic perch Perca fluviatilis on growth patterns of young‐of‐the‐year (YOY) perch covering several lakes and years. We found no influence of initial size or temperature on early body size development of perch. In contrast, there was a negative relationship between reproductive output and the length of YOY perch at five weeks of age. However, rather than an effect of density‐dependent growth mediated via depressed resources the relationship was driven by positive size‐selective cannibalism removing large individuals. Hence, given a positive correlation between the density of victims and predation pressure by cannibals, size‐dependent interactions between cannibals and their victims may wrongly be interpreted as patterns of density‐dependent growth in the victim cohort. Overall, our results support the view that density‐dependent resource‐limitation in early life stages is rare. Still, patterns of density‐dependent growth may emerge, but from variation in size‐selective predation pressure rather than density as such. This illustrates the importance of taking overall population demography and predatory interactions into account when studying growth patterns among recruiting individuals.  相似文献   

4.
Pär Byström  Jens Andersson 《Oikos》2005,110(3):523-536
Intraspecific competition for resources is strongly influenced by the size of competitors. In this study, we estimated the size‐scaling of the foraging capacities on zooplankton and benthic macroinvertebrates in Arctic char (Salvelinus alpinus) to link size‐dependent performance to effects from competition. The competitive interactions between two size‐classes (YOY and 1‐y) of char were then studied in a large‐scale pond experiment and in two small subarctic lakes. The attack rate function on zooplankton was hump‐shaped whereas the attack rate on benthic chironomids increased monotonically with size. The size‐scaling exponent's for zooplankton and chironomids were 0.65 and 0.30, respectively, leading to that critical resource density (CRD) and maximum growth resource density (GMRD) increases with size, suggesting an exploitative competitive advantage of small individuals over large. Correspondingly, large (1‐y) char growth was negatively affected by cohort competition whereas small (YOY) char growth was not. Diets of both size classes were dominated by macroinvertebrates with large overlap in prey size suggesting only small gape size advantages for large char. Small char fed to a larger extend on cladocerans which, due to the hump‐shaped foraging efficiency function on zooplankton, were a relatively more profitable resource for small than large char. Estimates of CRD and GmRD were in correspondence with observed growth responses and resource estimates for zooplankton, whereas for macroinvertebrates only qualitatively correspondence with foraging estimates and char performance was found. Although we were able to explain our results with exploitative competition only, we suggest a general need for size‐dependent foraging estimates on prey in more complex habitats in order to quantitatively link performance and resource abundances. Interference and size‐dependent resource use as mechanisms for observed stable population dynamics in char was not supported by this study and instead a low per capita fecundity and early cannibalism on recruits are suggested to be potential mechanisms that may stabilize char dynamics.  相似文献   

5.
The foraging related capacities, energy requirements and the ability of individuals to withstand starvation are strongly dependent on body size and temperature. In this study, we estimated size-dependent foraging rates and critical resource density (CRD) in small Arctic char ( Salvelinus alpinus ) under winter conditions and compared these with previous observations under summer conditions. We investigated if starvation mortality is size-dependent in the laboratory, and we assessed the potential for winter growth and the occurrence and size dependency of winter mortality both in a large scale pond experiment and in natural lakes. The efficiency of foraging on macroinvertebrates increased with size but was lower at 4 than 12°C, still CRD was lower at 4 than 12°C as metabolic rates decreased faster than foraging efficiency with temperature. When starved, small char died before large and at rates which suggest that YOY char need to feed during winter to avoid starvation. Results from both our pond experiment and field study indicate that survival of YOY char over winter is high, despite severe winter conditions, because YOY char are able to feed and grow during winter. In seasonal environments with declining resources, the size scaling and temperature dependency of foraging and metabolic demands may provide conditions which can favour either small or large individuals. This size advantage dichotomy relates to that larger individual's by having a higher CRD are more likely to start starving, but once resource levels are below CRD for all size classes, small individuals starve to death at a higher rate. Negative size-dependent winter mortality from starvation is suggested to be more pronounced in species that are not adapted to feed at low temperatures and in species feeding on zooplankton, since zooplankton abundance, in contrast to macroinvertebrate abundance, is generally low during winter.  相似文献   

6.
A detailed analysis of two euplanktonic populations carried out in the same period, 18 May–11 August, 1978, in two neighboring Mazurian lakes revealed different patterns of changes in population densities and significant differences in fecundity, age structure and mean sizes of individuals despite similar epilimnion temperatures in the lakes. Similar densities were maintained in both populations although food limitation was less important and predation more intense in one than in the other of the two lakes. The relative importance of food limitation and predation is discussed in lakes of low and high fertility. It is also suggested that both low food concentration and high selective predation pressure favors small clutch sizes in cladocerans.  相似文献   

7.
1. Recent theoretical studies on the population dynamic consequences of cannibalism have focused on mechanisms behind the emergence of large cannibals (giants) in size-structured populations. Theoretically, giants emerge when a strong recruiting cohort imposes competition induced mortality on stunted adults, but also provides a profitable resource for a few adults that accelerate in growth and reach giant sizes. 2. Here the effects of a recruitment pulse on the individual and population level in an allopatric Arctic char population have been studied over a 5-year period and these results were contrasted with theoretical model predictions for the conditions necessary for the emergence of cannibalistic giants. 3. The recruitment pulse had negative effects on invertebrate resource abundance, and the decrease in body condition and increase in mortality of adult char suggested that strong intercohort competition took place. 4. The frequency of cannibalism increased and a few char accelerated in growth and reached 'giant' sizes. 5. The main discrepancy between model predictions and field data was the apparently small effect the recruited cohort had on resources and adult char performance during their first summer. Instead, the effects became pronounced when the cohort was 1 year old. This mismatch between model predictions and field observations was suggested to be due to the low per capita fecundity in char and the restricted nearshore habitat use in young-of-the-year (YOY) char. 6. This study provides empirical evidence that the emergence of giants is associated with the breakthrough of a strong recruiting cohort and also suggests that the claimed stable char populations with large cannibals may instead be populations with dynamic size structure that results in intermittent breakthroughs of recruitment pulses, providing the conditions necessary for char to enter the cannibalistic niche. 7. The data suggest that increased recruit survival through restricted habitat use may destabilize dynamics and cause the emergence of giants. However, they also suggest that this does not necessarily develop into populations with bi-modal size structure in populations with low per capita fecundity and size- and density-dependent habitat use of recruiting cohorts.  相似文献   

8.
Douglas W. Morris 《Oikos》2005,109(2):239-254
Current research contrasting prey habitat use has documented, with virtual unanimity, habitat differences in predation risk. Relatively few studies have considered, either in theory or in practice, simultaneous patterns in prey density. Linear predator–prey models predict that prey habitat preferences should switch toward the safer habitat with increasing prey and predator densities. The density‐dependent preference can be revealed by regression of prey density in safe habitat versus that in the riskier one (the isodar). But at this scale, the predation risk can be revealed only with simultaneous estimates of the number of predators, or with their experimental removal. Theories of optimal foraging demonstrate that we can measure predation risk by giving‐up densities of resource in foraging patches. The foraging theory cannot yet predict the expected pattern as predator and prey populations covary. Both problems are solved by measuring isodars and giving‐up densities in the same predator–prey system. I applied the two approaches to the classic predator–prey dynamics of snowshoe hares in northwestern Ontario, Canada. Hares occupied regenerating cutovers and adjacent mature‐forest habitat equally, and in a manner consistent with density‐dependent habitat selection. Independent measures of predation risk based on experimental, as well as natural, giving‐up densities agreed generally with the equal preference between habitats revealed by the isodar. There was no apparent difference in predation risk between habitats despite obvious differences in physical structure. Complementary studies contrasting a pair of habitats with more extreme differences confirmed that hares do alter their giving‐up densities when one habitat is clearly superior to another. The results are thereby consistent with theories of adaptive behaviour. But the results also demonstrate, when evaluating differences in habitat, that it is crucial to let the organisms we study define their own habitat preference.  相似文献   

9.
Magnhagen C 《Oecologia》2006,147(4):734-743
I investigated if risk-taking behaviour of young-of-the-year (YOY) perch Perca fluviatilis was connected with population-specific predation patterns in four lakes in northern Sweden. The lakes differ in perch size distribution, according to earlier fishing surveys. Thus, the most intense predation pressure by cannibals is assumed to occur at different prey-size windows in the four lakes. In an aquarium study, I observed groups of perch, and registered time spent foraging in an open habitat and number of prey attacks in the presence of a predator. Perch from Ängersjön, with the highest proportion of large fish in the population, spent more time in the open area than those from Fisksjön that has a dense population of mainly small perch. The Ängersjön perch also made more prey attacks than did perch from Fisksjön and Bjännsjön. Relative differences in predation risk in the four lakes were estimated as cannibalistic attack rates, on a range of sizes of YOY perch, calculated from population size distributions. Principal component analysis on predation risk patterns resulted in two components, of which PC1 explained 79.1% of the variation. High scores of PC1 indicated low cannibalistic attack rates on smaller perch (10–20 mm) and high rates on larger fish (≥30 mm), while low scores indicated the opposite. The level of risk-taking behaviour in the aquarium study positively correlated with lake-specific PC1 scores. The perch with the most cautious behaviour in the aquaria originated from the population with the highest predation pressure on early stages. The boldest perch came from the lake with low predation on the smallest, but with higher predation on larger YOY perch. Thus, the influence of predation risk on behaviour patterns in perch may depend on the timing of the highest exposure to predators.  相似文献   

10.
11.
Mills MD  Rader RB  Belk MC 《Oecologia》2004,141(4):713-721
We suggest that the ultimate outcome of interactions between native species and invasive species (extinction or coexistence) depends on the number of simultaneous negative interactions (competition and predation), which depends on relative body sizes of the species. Multiple simultaneous interactions may constrain the ability of native species to trade fitness components (i.e., reduced growth for reduced risk of predation) causing a spiral to extinction. We found evidence for five types of interactions between the adults and juveniles of introduced western mosquitofish (Gambusia affinis) and the juveniles of native least chub (Iotichthys phlegethontis). We added ten large (23–28 mm) and seven small (9–13 mm) young-of-the-year (YOY) least chub to replicate enclosures with zero, low, and high densities of mosquitofish in a desert spring ecosystem. Treatments with mosquitofish reduced the average survival of least chub by one-third. No small YOY least chub survived in enclosures with high mosquitofish densities. We also performed two laboratory experiments to determine mortality to predation, aggressiveness, and habitat selection of least chub in the presence of mosquitofish. Mean mortality of least chub due to predation by large mosquitofish was 69.7% over a 3-h trial. Least chub were less aggressive, selected protected habitats (Potamogeton spp.), and were more stationary in the presence of mosquitofish where the dominance hierarchy was large mosquitofish>>large least chubsmall mosquitofish>>small least chub. Least chub juveniles appear to be figuratively caught in a vice. Rapid growth to a size refuge could reduce the risk of predation, but the simultaneous effects of competition decreased least chub growth and prolonged the period when juveniles were vulnerable to mosquitofish predation.  相似文献   

12.
Habitat use by feral cats and dingoes was examined within a heterogeneous semi‐arid woodland site in central Australia over 2 years. Density estimates of feral cats based on tracks were higher in mulga habitat than in open habitat. Isodar analysis implied that this pattern of habitat use by feral cats was consistent with the consumer‐resource model of density‐dependent habitat selection, which is an ideal free solution. The reason why mulga supported higher densities of feral cats was unclear. Foraging success of feral cats may be higher in the mulga because the stalk and ambush hunting tactics typically employed by felids are well suited to dense cover. Mulga may also have offered feral cats more protection from dingo predation. Dingo activity was distributed uniformly across habitats. The dingo isodar was statistically non‐significant, suggesting that habitat selection by dingoes was independent of density.  相似文献   

13.
In August, growth rate of young–of–the–year (YOY) Perch In lake enclosures could be explained by both YOY density and mean cladoceran biomass, suggesting that in a lake where YOY perch are dominant, growth may be density dependent in late summer and mediated through top–down control on daphnid biomass. In June, growth rate of YOY perch could not be fully explained by YOY density or by mean cladoceran biomass, suggesting that growth and survival during the first part of the summer is negatively affected by a diet of Bosmina and cyclopoid copepods only. The experiments also suggest why YOY perch have a slow growth and a low abundance in eutrophic lakes where small zooplankton dominate. The June experiment also indicated that growth of late larval or early juvenile perch improved when a larger cladoceran became available and was included in the diet.  相似文献   

14.
In the presence of size-selective fish daphnids were shown to exhibit two alternative inducible defence strategies: They may either escape predation by active migration or adopt a life history strategy, e.g., reproduce earlier and at a smaller size. Depending on the type of habitat, migration may either be vertically (in deep stratified lakes) or horizontally (in shallow lakes with macrophytes) oriented. Concerning behavioural defence strategies, daphnids living in medium-deep, weakly stratified water bodies with a poorly developed littoral face a dilemma, since the littoral provides no shelter and the availability of a deep-water refuge is unpredictable. We studied the population dynamics, life history changes (size at maturity) and daytime vertical distribution of Daphnia galeata in a weakly stratified reservoir in relation to predation by juvenile fish during 6 years. While temperature gradients were usually small, oxygen concentrations suggest that a low-oxygen refuge for daphnids was available in every year to some extent. Our results indicate that, depending on predation intensity and stratification patterns, daphnids exhibit both, behavioural and life history defences. In years with a high biomass of young-of-the-year (YOY) perch Daphnia abundance declined rapidly at the end of the clear water stage while at the same time the vertical distribution at daytime shifted to deep strata providing a low-oxygen refuge and the size at maturity decreased. However, while the life history response in some years lasted throughout most of the summer period, a shift in daytime vertical distribution was exhibited for much shorter periods. Both traits were much less expressed in years with low YOY fish densities and no negative correlation between them could be verified. We suggest that under high predation pressure in this relatively shallow reservoir no strictly alternative (either behavioural or life history) strategies exist, but that daphnids make use of the full range of possible anti-predator defences available, at least during short periods when predation is most intense. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

15.
Predation risk and feeding patterns of crucian carp   总被引:1,自引:0,他引:1  
As part of an experimental study of the direct and indirect effects of piscivory on prey fish, the diets of crucian carp Carassius carassius were compared across sections of a divided pond; two sections were stocked with crucian carp alone and two with crucian carp plus perch Perca fluviatilis . Analysis of crucian gut contents indicated that the composition of invertebrate prey did not differ in the presence v . absence of perch. However, crucians, particularly small individuals (<10cm) that were most vulnerable to predation, displayed a lower intake of invertebrate prey in sections with perch. Although diet composition differed between crucians caught in inshore v. offshore habitats (with habitat use being related to crucian size and the presence or absence of perch), no clear pattern existed between habitat and total food intake. Overall, the major effects of predators on the diet of crucian carp appeared to be caused by increased ecological density (resulting from confinement of small crucians inshore) and reduced activity levels, rather than simple shifts to safer habitats.  相似文献   

16.
M. A. Leibold 《Oecologia》1991,86(4):510-520
Summary Two commonly coexisting species of Daphnia segregate by habitat in many stratified lakes. Daphnia pulicaria is mostly found in the hypolimnion whereas D. galeata mendotae undergoes diel vertical migration between the hypolimnion and the epilimnion. I examined how habitat segregation between these two potentially competing species might be affected by trophic interactions with their resources and predators by performing a field experiment in deep enclosures in which I manipulated fish predation, nutrient levels, and the density of epilimnetic Daphnia. The results of the experiment indicate that habitat use by D. pulicaria can be jointly regulated by competition for food from epilimnetic Daphnia and predation by fishes. Patterns of habitat segregation between the two Daphnia species were determined by predation by fish but not by nutrient levels: The removal of epilimnetic fish predators resulted in higher zooplankton and lower epilimnetic phytoplankton densities and allowed D. pulicaria to expand its habitat distribution into the epilimnion. In contrast, increased resource productivity resulted in higher densities of both Daphnia species but did not affect phytoplankton levels or habitat use by Daphnia. The two species exhibit a trade-off in their ability to exploit resources and their susceptibility to predation by fish. D. g. mendotae (the less susceptible species) may thus restrict D. pulicaria (the better resource exploiter) from the epilimnion when fish are common due to lower minimum resource requirements than those needed by D. pulicaria to offset the higher mortality rate imposed by selective epilimnetic fish predators. D. g. mendotae does not appear to have this effect in the absence of fish.  相似文献   

17.
Land management intrinsically influences the distribution of animals and can consequently alter the potential for density-dependent processes to act within populations. For declining species, high densities of breeding territories are typically considered to represent productive populations. However, as density-dependent effects of food limitation or predator pressure may occur (especially when species are dependent upon separate nesting and foraging habitats), high territory density may limit per-capita productivity. Here, we use a declining but widespread European farmland bird, the yellowhammer Emberiza citrinella L., as a model system to test whether higher territory densities result in lower fledging success, parental provisioning rates or nestling growth rates compared to lower densities. Organic landscapes held higher territory densities, but nests on organic farms fledged fewer nestlings, translating to a 5 times higher rate of population shrinkage on organic farms compared to conventional. In addition, when parental provisioning behaviour was not restricted by predation risk (i.e., at times of low corvid activity), nestling provisioning rates were higher at lower territory densities, resulting in a much greater increase in nestling mass in low density areas, suggesting that food limitation occurred at high densities. These findings in turn suggest an ecological trap, whereby preferred nesting habitat does not provide sufficient food for rearing nestlings at high population density, creating a population sink. Habitat management for farmland birds should focus not simply on creating a high nesting density, but also on ensuring heterogeneous habitats to provide food resources in close proximity to nesting birds, even if this occurs through potentially restricting overall nest density but increasing population-level breeding success.  相似文献   

18.
Michael R. Heithaus 《Oikos》2001,92(3):542-554
Competition and predation have broad ecological consequences as they may influence individual behavior and community structure. In some cases, they are linked and predator and prey are also competitors (intraguild predation). I present a game theoretic model of habitat use by predators and prey under conditions of asymmetrical intraguild predation. This model predicts that when the diet of intraguild predators is restricted to intraguild prey and the resource for which predators and prey compete (the basal resource), co-occurrence is only stable when dietary overlap is low and productivity of the basal resource is not high. The addition of alternative resources for predators results in co-occurrence under all conditions. Variation in alternative resource productivity produces a continuum of intraguild prey distributions from matching relative habitat safety, to one that reflects both food and predation risk. When there is a substantial alternative resource for predators, the distribution of predators matches that of alternative resource availability while the distribution of prey is influenced by both habitat riskiness and food availability. The density and distribution of the predator's alternative resource thus influence habitat selection by the intraguild prey. This stresses the importance of indirect interactions in structuring habitat use in communities and the need to view habitat selection in a community context.  相似文献   

19.
Body shape of young‐of‐the‐year (YOY) perch Perca fluviatilis , and number and size of potential predators (perch and pike Esox lucius ) were compared across five lakes in northern Sweden. Body depth and dorsal fin ray length of YOY perch differed between lakes, with high relative body depth and long dorsal fin rays found in the lakes where the number of large piscivores was the highest. The most slender fish were found in the lake where the perch population had the smallest individuals and pike occurred in very low numbers. The average body mass in YOY perch from the two lakes with highest and lowest body depth, respectively, were the same, which indicates a difference between lakes in the relation between growth in length and in depth. Both body depth and fin ray length were correlated with predation risk by pike. Fin ray length was also correlated with number of piscivorous perch. Selection for different body shapes can be caused by different biotic and abiotic factors, singly or in combination, and the results from this study indicates that predation risk is one of these factors affecting body depth and fin ray length in perch.  相似文献   

20.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号