首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hydroxamic acids, R-CONHOH, are inhibitors specific to the respiratory pathway through the alternate, cyanide-insensitive terminal oxidase of plant mitochondria. The nature of the R group in these compounds affects the concentration at which the hydroxamic acids are effective, but it appears that all hydroxamic acids inhibit if high enough concentrations are used. The benzhydroxamic acids are effective at relatively low concentrations; of these, the most effective are m-chlorobenzhydroxamic acid and m-iodobenzhydroxamic acid. The concentrations required for half-maximal inhibition of the alternate oxidase pathway in mung bean (Phaseolus aureus) mitochondria are 0.03 mm for m-chlorobenzhydroxamic acid and 0.02 mm for m-iodobenzhydroxamic acid. With skunk cabbage (Symplocarpus foetidus) mitochondria, the required concentrations are 0.16 for m-chlorobenzhydroxamic acid and 0.05 for m-iodobenzhydroxamic acid. At concentrations which inhibit completely the alternate oxidase pathway, these two compounds have no discernible effect on either the respiratory pathway through cytochrome oxidase, or on the energy coupling reactions of these mitochondria. These inhibitors make it possible to isolate the two respiratory pathways and study their mode of action separately. These inhibitors also enhance an electron paramagnetic resonance signal near g = 2 in anaerobic, submitochondrial particles from skunk cabbage, which appears to be specific to the alternate oxidase and thus provides a means for its assay.  相似文献   

2.
CoQ links the sn-glycerol-3-phosphate dehydrogenase and oxidase components of the cyanide-insensitive, non-cytochrome-mediated respiratory system of bloodstream African trypanosomes. In this and other characteristics, their respiratory system is similar to the alternative oxidase of plants. The parasites contain 206 ng of CoQ9 mg protein-1 which co-sediments with respiratory activity. The redox state of this CoQ responds in a manner consistent with respiratory function: 60% being in the reduced form when substrate is available and the oxidase is blocked; 13% being in the reduced form when the oxidase is functioning and there is no substrate. The addition of CoQ to aceton-extracted cells stimulates salicylhydroxamic acid-sensitive respiration by 56%. After inhibition of respiration by digitonin-mediated dispersal of the electron transport components, liposomes restore 40% of respiratory activity while liposomes containing CoQ restore 66% of this activity. A less hydrophobic analogue, reduced decyl CoQ, serves as a direct substrate for the trypanosome oxidase supporting full salicylhydroxamic acid-sensitive respiration. After digitonin disruption of electron transport, the nonreduced form of this synthetic substrate can reestablish the chain by accepting electrons from dispersed sn-glycerol-3-phosphate dehydrogenase and transferring them to the dispersed oxidase. Similarities between the alternative oxidase of plants and the oxidase of the trypanosome respiratory system include: mitochondrial location, lack of oxidative phosphorylation, linkage of a dehydrogenase and an oxidase by CoQ, lack of sensitivity to a range of mitochondrial inhibitors, and sensitivity to a spectrum of inhibitors which selectively block transfer of electrons from reduced CoQ to the terminal oxidase but do not block electron transfer to the cytochrome bc1 complex of the mammalian cytochrome chain.  相似文献   

3.
Alternative oxidase (AOX) plays a pivotal role in cyanide-resistance respiration in the mitochondria of plants, fungi and some protists. Here we show that AOX from thermogenic skunk cabbage successfully conferred cyanide resistance to human cells. In galactose medium, HeLa cells with mitochondria-targeted AOX proteins were found to have significantly less reactive oxygen species production in response to antimycin-A exposure, a specific inhibitor of respiratory complex III. These results suggest that skunk cabbage AOX can be used to create an alternative respiration pathway, which might be important for therapy against various mitochondrial diseases.  相似文献   

4.
ABSTRACT. The glycerophosphate oxidase (GPO), the unique terminal oxidase of bloodstream trypanosome (TAO), appears to be functionally similar to the alternative oxidases of some plants and higher fungi. Immunoblotting of mitochondrial proteins of bloodstream trypomastigotes of Trypanosoma brucei brucei with monoclonal or polyclonal antibodies to Sauromatum guttatum (voodoo lily) and Symplocarpus foetidus (skunk cabbage) alternative oxidases respectively revealed two proteins of about 33 kDa (p33) and 68 kDa (p68). These proteins are not present in procyclic trypomastigotes. Electrophoresis under rigorous denaturing conditions indicated p68 to be the dimer of p33. Indirect immunofluorescent studies of bloodstream and procyclic trypomastigotes with monoclonal antibody to plant alternative oxidase also showed the localization of 33 kDa protein in the mitochondria of the bloodstream trypomastigotes. The functional TAO activity could be solubilized efficiently from the mitochondrial membrane of the bloodstream trypomastigotes by 1% NP-40 or 10 mM lauryl maltoside. When fractionated by Superose 12 gel filtration chromatography, p33 was co-purified with the TAO enzymatic activity. The apparent molecular size of the active enzyme complex was found to be 160 kDa. Gradual disappearance of the 33 kDa protein and the TAO enzymatic activity were well correlated during in vitro differentiation of the bloodstream to procyclic trypomastigotes. This study implies that the net biosynthesis of p33, an essential subunit of TAO, is decreased during differentiation from bloodstream to procyclic trypomastigotes.  相似文献   

5.
The mitochondrial electron transfer chain present in the procyclic form of the African trypanosome Trypanosoma brucei contains both cytochrome c oxidase and an alternative oxidase (TAO) as terminal oxidases that reduce oxygen to water. By contrast, the electron transfer chain of the primitive mitochondrion present in the bloodstream form of T. brucei contains only TAO as the terminal oxidase. TAO functions in the bloodstream forms to oxidize the ubiquinol produced by the glycerol-3-phosphate shuttle that results in the oxidation of the reduced nicotinamide adenine dinucleotide phosphate produced by glycolysis. The function, however, of TAO in the procyclic forms is unknown. In this study, we found that inhibition of TAO by the specific inhibitor salicylhydroxamic acid stimulates the formation of reactive oxygen species (ROS) in trypanosome mitochondria, resulting in mitochondrial alteration and increased oxidation of cellular proteins. Moreover, the activity and protein content of TAO in procyclic trypanosomes were increased when cells were incubated in the presence of hydrogen peroxide or antimycin A, the cytochrome bc1 complex inhibitor, which also results in increased ROS production. We suggest that one function of TAO in procyclic cells may be to prevent ROS production by removing excess reducing equivalents and transferring them to oxygen.  相似文献   

6.
The activation of 4-bromocrotonic acid, 4-bromo-2-octenoic acid, valproic acid, and 3-methylglycidic acid by conversion to their CoA thioesters and the effects of these carboxylic acids on palmitoylcarnitine-supported respiration were studied with rat liver and rat heart mitochondria. 4-Bromocrotonic acid was activated by both liver and heart mitochondria, whereas 4-bromo-2-octenoic acid and valproic acid were only activated by liver mitochondria. 3-Methylglycidic acid was not a substrate of mitochondrial activation. All of the carboxylic acids that were activated also inhibited palmitoylcarnitine-supported respiration. 3-Methylglycidoyl-CoA was found to irreversibly inhibit 3-ketoacyl-CoA thiolase in a concentration-dependent and time-dependent manner. Together, these results lead to the conclusion that substituted medium-chain carboxylic acids, which enter mitochondria directly, may inhibit β-oxidation as long as they are activated and perhaps further metabolized in the mitochondrial matrix to compounds that sequester CoA and/or inhibit β-oxidation enzymes. Liver is more susceptible to inhibition by such xenobiotic carboxylic acids due to the broader substrate specificity of its mitochondrial medium-chain acyl-CoA synthetase (EC 6.2.1.2).  相似文献   

7.
The functional molecular mass of the cyanide-resistant salicylhydroxamate-sensitive duroquinol oxidase activity from Sympocarpus foetidus (skunk cabbage) and Sauromatum guttatum spadix mitochondria was determined by radiation-inactivation analysis. The functional molecular mass for the oxidase activity was found to be 26,700 Da for skunk cabbage and 29,700 Da for Sauromatum guttatum mitochondria frozen at -70 degrees C. Irradiation of dried mitochondrial samples resulted in a larger target size of 38,000 Da, and in some cases, a stimulation of activity at low dose of radiation. The functional molecular mass of cytochrome c oxidase activity from skunk-cabbage and bovine heart mitochondria was also investigated. Dried and frozen mitochondrial samples from both species yielded similar target sizes, in the range 70,900-73,400 Da. Purified bovine heart cytochrome c oxidase was also irradiated, and yielded a functional molecular mass of 66,400 Da. The target size of cytochrome c oxidase agrees with literature values insofar as the target size is considerably smaller than the molecular mass of the entire complex.  相似文献   

8.
Mitochondria were prepared from the spadices of skunk cabbage (Symplocarpus foetidus) whose respiratory rate with succinate and malate showed 15% to 30% sensitivity to cyanide inhibition, and which showed respiratory control by added ADP. The observed respiratory control ratios ranged from 1.1 to 1.4. The change in pH of the mitochondrial suspension was recorded simultaneously with oxygen uptake: alkalinization of the medium, expected for phosphorylation of ADP, coincided with the period of acceleration in oxygen uptake caused by addition of an ADP aliquot. The ADP/O ratios obtained were 1.3 for succinate and 1.9 for malate. In the presence of 0.3 mm cyanide, the ADP/O ratio for succinate was zero, while that for malate was 0.7. These results are consistent with the existence of an alternate oxidase which interacts with the flavoprotein and pyridine nucleotide components of the respiratory chain and which, in the presence of cyanide, allows the first phosphorylation site to function with an efficiency of about 70%. In the absence of respiratory inhibitors, the efficiency of each phosphorylation site is also about 70%. This result implies that diversion of reducing equivalents through the alternate oxidase, thereby bypassing the 2 phosphorylation sites associated with the cytochrome components of these mitochondria, occurs to a negligible extent during the oxidative phosphorylation of ADP or State 3.Addition of ADP or uncoupler to skunk cabbage mitochondria respiring in the controlled state or State 4, results in reduction of cytochrome c and the oxidation of the cytochromes b, ubiquinone and pyridine nucleotide. A site of interaction of ADP with the respiratory chain between cytochromes b and cytochrome c is thereby identified by means of the crossover theorem. Flavoprotein measured by fluorescence is also oxidized upon addition of ADP or uncoupler, but flavoprotein measured by optical absorbance changes becomes more reduced under these conditions. Depletion of the mitochondria by pretreatment with ADP and uncoupler prevents reduction of most of the fluorescent flavoprotein by succinate. These results indicate that skunk cabbage mitochondria contain both high and low potential flavo-proteins characterized by different fluorescence/absorbance ratios similar to those demonstrated to be part of the respiratory chain in mitochondria from animal tissues.  相似文献   

9.
In order to clarify the structural requirements associated with the inhibition of mitochondrial respiration by MPP+, the neurotoxic metabolites of the Parkinsonian agent MPTP, ten sets of pyridine/N-methylpyridinium pairs and a few miscellaneous compounds were evaluated on rat liver intact mitochondria (Mw) and on submitochondrial particles (SMP). The pyridinium partners were much more potent inhibitors on Mw than on SMP, indicating that they are concentrated inside mitochondria by the energy-dependent process previously reported for MPP+, probably as a consequence of non-specific passive transport across the mitochondrial inner membrane in response to the transmembrane potential. In the SMP assay, the neutral pyridines were stronger inhibitors than were the pyridinium cations, and the inhibitory potency varied little with structural changes. The N-methylated forms of beta-carbolines may act as endogenous MPP+-like agents.  相似文献   

10.
Perezone (2-(1,5-dimethyl-4-hexenyl)-3-hydroxymethyl-p-benzoquinone) is a sesquiterpenic benzoquinone isolated from roots of plants of the genus Perezia. It exhibits oxido-reduction characteristics which suggest that the compound can be used for studies of the electron transfer chain of rat liver mitochondria. Perezone at 50 microM inhibits mitochondrial electron transport through a process which differs from that of rotenone, amytal, and Antimycin A. The inhibition is temperature dependent; at 35 degrees C it fails to inhibit valinomycin-induced mitochondrial respiration, but at 20 degrees C it inhibits respiration by 80-90%. Perezone is an electron-donor and electron-acceptor compound that behaves similarly to naphtoquinone. It mediates electron transport from a reaction center preparation isolated from Rhodopseudomonas sphaeroides and added cytochrome c. The low respiration of rat liver mitochondria depleted of coenzyme Q10 (CoQ) is increased by perezone. The electron transport activity of perezone was also demonstrated with CoQ-deficient yeast mutant E3-24.  相似文献   

11.
Menadione and vicasol completely restore the respiration rate of rat liver mitochondria after its inhibition by rotenone. Under the same conditions these compounds stimulate oxygen consumption by rabbit heart mitochondria up to 40% of the maximal uncoupled respiration rate in the presence of 5 mM glutamate and up to 30% of the maximal uncoupled respiration rate in a lymphocyte suspension containing glucose. Cyanide and dicumarol, specific inhibitors of DT-diaforase, completely suppress the stimulating effect of menadione and vicasol in isolated mitochondria and by 50% in lymphocyte suspensions. The DiS-C3-(5) fluorescence in lymphocyte suspensions suggests that the menadione and vicasol-induced respiration is capable of supporting the mitochondrial transmembrane potential in lymphocytes. Thus, in different tissues menadione and vicasol can restore oxygen consumption in mitochondria, in which the first and second energy coupling sites are inhibited.  相似文献   

12.
Long-chain acyl-coenzyme A esters (LCAC), which may accumulate under different pathological conditions and especially in patients with a mitochondrial fatty acid beta-oxidation defect, have long been known as potent inhibitors of several enzymes in multiple metabolic pathways, particularly the oxidative phosphorylation system (OXPHOS). To shed more light on the inhibitory mechanisms of acyl-CoA esters upon energy metabolism, the effect of palmitoyl-CoA and its beta-oxidation intermediates on OXPHOS was studied. We have recently shown that, using rat liver mitochondria, LCAC inhibit l-glutamate driven oxygen consumption in the presence of ADP whereas no effect is found when an uncoupler is used to stimulate respiration maximally. A similar inhibitory effect of these compounds is now reported upon the distribution of ATP for intra- and extra-mitochondrial utilization. Taken together these data strongly suggest that the inhibition of ADP-induced respiration with l-glutamate as substrate by LCAC is primarily due to inhibition of the mitochondrial ADP/ATP carrier.  相似文献   

13.
Wang J  Edmondson DE 《Biochemistry》2011,50(13):2499-2505
TEMPO-substituted pargyline analogues differentially inhibit recombinant human monoamine oxidase A (MAO A) and B (MAO B) in intact yeast mitochondria, suggesting these membrane-bound enzymes are located on differing faces of the mitochondrial outer membrane [Upadhyay, A., and Edmondson, D. E. (2009) Biochemistry 48, 3928]. This approach is extended to the recombinant rat enzymes and to rat liver mitochondria. The differential specificities exhibited for human MAO A and MAO B by the m- and p-amido TEMPO pargylines are not as absolute with the rat enzymes. Similar patterns of reactivity are observed for rat MAO A and B in mitochondrial outer membrane preparations expressed in Pichia pastoris or isolated from rat liver. In intact yeast mitochondria, recombinant rat MAO B is inhibited by the pargyline analogue whereas MAO A activity shows no inhibition. Intact rat liver mitochondria exhibit an inhibition pattern opposite to that observed in yeast where MAO A is inhibited and MAO B activity is unaffected. Protease inactivation studies show specificity in that MAO A is sensitive to trypsin whereas MAO B is sensitive to β-chymotrypsin. In intact mitochondrial preparations, MAO A is readily inactivated in rat liver but not in yeast upon trypsin treatment and MAO B is readily inactivated by β-chymotrypsin in yeast but not in rat liver. These data show MAO A is oriented on the cytosolic face and MAO B is situated on the surface facing the intermembrane space of the mitochondrial outer membrane in rat liver. The differential mitochondrial outer membrane topology of MAO A and MAO B is relevant to their inhibition by drugs designed to be cardioprotectants or neuroprotectants.  相似文献   

14.
The sulfhydryl compounds, 2-mercaptoethanol, dithiothreitol, cysteine. and glutathione inhibit the incorporation of [3H]dTTP or [3H]dATP into mitochondrial DNA by rat liver mitochondria in vitro. The lack of inhibition by non-SH-containing analogs indicates that the SH group is responsible for the inhibition.The inhibition does not result from an effect of the sulfhydryl compounds on precursor permeability, ATP formation, or respiration, or the action of the thiol on the outer mitochondrial membrane. An intact inner membrane is not required for the action of the inhibitor. Furthermore, SH compounds do not appear to exert their effect by activation of a mitochondrial nuclease, chemical breakdown of high molecular-weight mitochondrial DNA or dissociation of membrane-bound DNA from the inner mitochondrial membrane. Incorporation of labeled precursor into DNA by mitochondrial DNA polymerase, when removed from the inner mitochondrial membrane, is not inhibited by SH compounds.Cytoplasmic extracts prepared from rat and mouse tumors and 22-h regenerating rat liver contain a protein(s) not detectable in normal rat liver which can reverse the inhibition by SH compounds of the synthesis of mitochondrial DNA in rat liver mitochondria in vitro.More importantly, when the stimulatory protein(s) is partially purified by affinity chromatography on DNA-cellulose, it is possible to demonstrate that this protein(s) also stimulates the synthesis of mitochondrial DNA by normal rat liver mitochondria in vitro in the absence of the sulfhydryl inhibitor.  相似文献   

15.
To counter antibiotic-resistant bacteria, we screened the Kitasato Institute for Life Sciences Chemical Library with bacterial quinol oxidase, which does not exist in the mitochondrial respiratory chain. We identified five prenylphenols, LL-Z1272β, γ, δ, ? and ζ, as new inhibitors for the Escherichia coli cytochrome bd. We found that these compounds also inhibited the E. coli bo-type ubiquinol oxidase and trypanosome alternative oxidase, although these three oxidases are structurally unrelated. LL-Z1272β and ? (dechlorinated derivatives) were more active against cytochrome bd while LL-Z1272γ, δ, and ζ (chlorinated derivatives) were potent inhibitors of cytochrome bo and trypanosome alternative oxidase. Thus prenylphenols are useful for the selective inhibition of quinol oxidases and for understanding the molecular mechanisms of respiratory quinol oxidases as a probe for the quinol oxidation site. Since quinol oxidases are absent from mammalian mitochondria, LL-Z1272β and δ, which are less toxic to human cells, could be used as lead compounds for development of novel chemotherapeutic agents against pathogenic bacteria and African trypanosomiasis.  相似文献   

16.
J X Li  H Schulz 《Biochemistry》1988,27(16):5995-6000
In an attempt to develop a compound which would specifically inhibit 3-ketoacyl-CoA thiolase (EC 2.3.1.16) in whole mitochondria, 4-bromo-2-octenoic acid was synthesized and studied. After rat liver mitochondria were preincubated with 4-bromo-2-octenoic acid for 3 min, respiration supported by either palmitoylcarnitine or pyruvate was completely abolished, whereas no inhibition was observed with rat heart mitochondria. Addition of carnitine stimulated respiration supported by pyruvate without relieving inhibition of palmitoylcarnitine-dependent respiration. Hence, this compound seems to be a specific inhibitor of beta-oxidation. When the enzymes of beta-oxidation were assayed in a soluble extract prepared from mitochondria preincubated with 4-bromo-2-octenoic acid, only 3-ketoacyl-CoA thiolase was found to be inactivated. 4-Bromo-2-octenoic acid is metabolized by mitochondrial beta-oxidation enzymes to 3-keto-4-bromooctanoyl-CoA which effectively and irreversibly inhibits 3-ketoacyl-CoA thiolase but not acetoacetyl-CoA thiolase (EC 2.3.1.9). Even though 3-keto-4-bromooctanoyl-CoA inhibits the latter enzyme reversibly, 4-bromo-2-octenoic acid does not inhibit ketogenesis in rat liver mitochondria with acetylcarnitine as a substrate. It is concluded that 4-bromo-2-octenoic acid specifically inhibits mitochondrial fatty acid oxidation by inactivating 3-ketoacyl-CoA thiolase in rat liver mitochondria.  相似文献   

17.
One- and two-dimensional gel electrophoresis of the solubilized mitochondrial proteins of bloodstream and procyclic trypomastigote Trypanosoma brucei rhodesiense and radiolabeling of proteins in the presence of cycloheximide were used to identify proteins synthesized in the trypanosome mitochondrion. The proteins which comprise the mitochondrion were found to be very similar in both bloodstream and procyclic trypomastigotes, but do differ in their level of synthesis. A protein putatively identified as subunit II of cytochrome oxidase (EC 1.9.3.1) was detected in mitochondria from both the procyclic and bloodstream organisms. The presence of this protein in bloodstream trypomastigotes and the overall similarity of protein content in the trypanosome mitochondria is noteworthy in view of the fact that bloodstream trypomastigotes have a repressed mitochondrion with no detectable tricarboxylic acid cycle or cytochrome electron transport chain.  相似文献   

18.
The effects on mitochondrial respiration and complex I NADH oxidase activity of cubebin and derivatives were evaluated. The compounds inhibited the state 3 glutamate/malate-supported respiration of hamster liver mitochondria with IC(50) values ranging from 12.16 to 83.96 microM. NADH oxidase reaction was evaluated in submitochondrial particles. The compounds also inhibited this activity, showing the same order of potency observed for effects on state 3 respiration, as well as a tendency towards a non-competitive type of inhibition (K(I) values ranging from 0.62 to 16.1 microM). A potential binding mode of these compounds with complex I subunit B8, assessed by docking calculations, is proposed.  相似文献   

19.
Biochemical micromethods were used for the investigation of changes in mitochondrial oxidative phosphorylation associated with cytochrome c oxidase deficiency in brain cortex from Mo(vbr) (mottled viable brindled) mice, an animal model of Menkes' copper deficiency syndrome. Enzymatic analysis of cortex homogenates from Mo(vbr) mice showed an approximately twofold decrease in cytochrome c oxidase and a 1.4-fold decrease in NADH:cytochrome c reductase activities as compared with controls. Assessment of mitochondrial respiratory function was performed using digitonin-treated homogenates of the cortex, which exhibited the main characteristics of isolated brain mitochondria. Despite the substantial changes in respiratory chain enzyme activities, no significant differences were found in maximal pyruvate or succinate oxidation rates of brain cortex homogenates from Mo(vbr) and control mice. Inhibitor titrations were used to determine flux control coefficients of NADH:CoQ oxidoreductase and cytochrome c oxidase on the rate of mitochondrial respiration. Application of amobarbital to titrate the activity of NADH:CoQ oxidoreductase showed very similar flux control coefficients for control and mutant animals. Alternately, titration of respiration with azide revealed for Mo(vbr) mice significantly sharper inhibition curves than for controls, indicating a more than twofold elevated flux control coefficient of cytochrome c oxidase. Owing to the reserve capacity of respiratory chain enzymes, the reported changes in activities do not seem to affect whole-brain high-energy phosphates, as observed in a previous study using 31P NMR.  相似文献   

20.
The activity of mitochondrial 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) in rat and chicken liver was found to be comparable with the activity of electron transport chain of rat liver mitochondria. This activity is absent in chicken liver mitochondria, which are devoid of the 3-hydroxybutyrate oxidase activity. Both types of mitochondria have nearly identical respiration parameters but respond differently to Mg2+. It was assumed that chicken liver mitochondria are characterized by a low rate of fatty acids oxidation due to the absence of 3-hydroxybutyrate dehydrogenase in these organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号