首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a recent article, Heydari et al. (2008) suggested that the perturbation at the Permian–Triassic boundary (PTB) was initiated by processes associated with an end-Permian mantle plume including igneous intrusions and uplift. These events resulted in the massive release of CH4 primarily from the dissociation of marine gas hydrates, and secondarily from maturation of organic-rich sediments and fracturing of petroleum reservoirs. Injection of CH4 into the ocean changed seawater composition (the acid-bath ocean) leading to marine mass extinction. Transfer of CO2 and CH4 from the ocean to the atmosphere created a hot climate (the end-Permian inferno) which caused the terrestrial mass extinction. We suggested that the Siberian trap volcanism and marine anoxia played little role in this catastrophe.Wignall and Racki (2009-this issue) have raised three criticisms to our article. The first is that our interpretation has been previously advocated by others. Our re-evaluation indicates that our interpretation was in fact opposite of those considered by Wignall and Racki (2009-this issue) to have presented scenarios similar to ours.The second, Wignall and Racki (2009-this issue) also suggest that our proposed change in carbonate mineralogy across the PTB did not occur because such a change “should produce a large positive excursion rather than the observed negative excursion”. Wignall and Racki (2009-this issue) have made a basic mathematical error in evaluating the effect of carbonate mineralogy on δ13C values. Therefore, they have reached two wrong conclusions: one about the validity of a change in carbonate mineralogy and the other regarding its effect on the shift in δ13C values at the PTB. A change in carbonate mineralogy produced a larger negative excursion rather than a positive shift.The third, Wignall and Racki (2009-this issue) indicate that the PTB ocean was anoxic to the rim. This criticism is not supported by the rock record because highly bioturbated strata were deposited in environments ranging from shallow shelves to deep waters under oxygenated water column at the time of the PTB mass extinction. If the ocean were totally stratified for 20 Ma, and if anoxia extended all the way to the shoreline, and if the ocean were anoxic to the rim and H2S were oozing out of it, then we should see at least 100 m of organic-rich, varved-laminated strata in areas ranging from the abyssal plain to the shoreline environments. Such strata have not yet been found.  相似文献   

2.
Carbonate and total organic carbon stable isotope analyses of the Upper Permian and Lower Triassic succession in the Masore section in western Slovenia indicate a high storage of organic matter during the Upper Permian, as well as the well known worldwide light carbon isotope event across the P/Tr boundary. The perturbations in the global carbon cycle observed in the investigated section span an approximately 50 cm thick interval (from –11 cm below to +41 cm above the lithostratigraphically determined P/Tr boundary), and coincide more or less with changes in lithology, as well as with an abrupt disappearance of Upper Permian marine fauna. In this section changes in the sedimentary environment are most probably related to Upper Permian—Lower Triassic sea level changes. The carbonate and organic carbon negative peak anomaly could be explained by accelerated changes in the end Permian carbon cycle, due to some co-occurring events, such as pronounced erosion and oxidation of organic carbon, a possible release of methane from stored hydrates, and volcanic activity, as well as by a sudden reduction in primary productivity triggered by not yet completely satisfactorily explained mechanisms.  相似文献   

3.
The section at Shangsi in Sichuan contains one of the most detailed and best records of events during the Permian/Triassic (P/T) mass extinction. Continuous deep water deposition is only punctuated by a minor shallowing in the late Changxingian. The micritic mudstones and wackestones of the Changxingian Dalong Formation contain abundant ammonoids and radiolaria and diverse and common benthic taxa (mostly bivalves and brachiopods) in a thoroughly bioturbated sediment. The presence of a well developed tiered burrow profile is just one line of evidence for a fully oxygenated water column in the late Permian. The faunal crisis occurs in the top few decimetres of the Dalong Formation and severely affected all groups (benthos, nekton and plankton). The extinction coincides precisely with the development of anaerobic and dysaerobic facies. The basal Triassic sediments of the Feixanguan Formation are thinnly‐bedded or laminated silicic marls and contain pyrite and several levels of elevated organic carbon concentrations. The fauna is restricted to rare ammonoids and a few bedding planes covered in Claraia. The presence of abundant coccoid cyanobacteria in these sediments may indicate an unusually simple trophic web in the early Triassic seas as these picoautotrophs are normally grazed by zooplankton, they are rarely directly incorporated into seafloor sediment. The recent discovery of black shales in P/T pelagic sediments of Japan indicates that the anoxic event also affected deep ocean waters and further strengthens the link between extinction and anoxia.  相似文献   

4.
Calcite and aragonite seas are commonly distinguished based on the prevailing primary mineralogy of ooids and carbonate cements over time. Secular oscillations of these seas are usually attributed to changes in ocean chemistry and paleoclimate. While the veracity of such oscillations has been verified by independent data and modeling approaches, the timing of the transition from one ocean state to the other remains poorly resolved. Here, the timing of the last aragonite–calcite sea transition is estimated by assessing the preservation of Early Jurassic ooids from the Trento Platform in northern Italy. Point counting of ooid-bearing limestones from four distinct stratigraphic levels provides a contrasting pattern: Hettangian and Sinemurian ooids are all poorly preserved and were probably predominantly originally aragonitic, whereas Pliensbachian and Toarcian ooids are excellently preserved, suggesting a primary calcitic mineralogy. Although calcitic ooids may have already been common in the Late Triassic, it is proposed that the last aragonite–calcite sea transition occurred in the Early Jurassic between the Sinemurian and Pliensbachian, at least in this subtropical region. Therefore, the selective extinction of aragonite-secreting organisms at the end-Triassic mass extinction cannot be attributed to secular changes in ocean chemistry.  相似文献   

5.
Shreerup Goswami   《Palaeoworld》2008,17(1):21-32
The Permian–Triassic succession of the Indian Gondwana Sequence was previously considered to have been deposited in a fluviatile-lacustrine environment. Similarly, earlier Lower Gondwanas of Orissa State (a major part of the Mahanadi Master basin) were considered entirely fresh water deposits. Faunal evidence is still scanty in this master basin. Ichnology and palynology along with a few sedimentary records are reviewed and analysed for inferring marine signature. The marine nature of the Talchir, Karharbari, Barakar, Barren Measures and Kamthi sediments of three major basins (Talcher, Ib River and Athgarh) in Orissa State was predicted on the basis of typical marine ichnofossils. Most of these sediments also contain acritarchs reflecting marine marginal environment throughout the Permian. Moreover, evidence of wave activity, salinity raise and discovery of phosphorite in Permian sediments also strengthen this view.Hence, the previous model of continental facies for the Lower Gondwanas is found to be incorrect. The ichnofossils (Skolithos and Cruziana ichno-facies), acritarchs (Foveofusa, Leiosphaeridia, Greinervillites, etc.) and other palynofossils of marine origin can be utilized as a tool for palaeoenvironmental reconstruction. In the Gondwana basins of Orissa (Mahanadi Master basin), consistent occurrence of marine acritarchs and trace fossils with some typical sedimentary structures such as wave ripples has been studied and reviewed from the Talchir (Early Permian) to Upper Kamthi (Triassic) formations at various time intervals. Here marine incursion could have occurred due to the well known global transgressions during Permian and Triassic.  相似文献   

6.
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.  相似文献   

7.
An aperiodic collision of the Earth with extra-terrestria] ice/volatile bodies is proposed as a mechanism to produce rapid changes in the geologic record. Due to the volatile nature of these bodies, evidence for their impacts, particularly in the ocean might be subtle and best seen as 'spikes' in the geochemical or fossil record against normal background. Differing effects would result depending on the site of the major break-up of the object: in the atmosphere, on land, or in the ocean. This paper focuses on the effects of adding material to the seas, oceans, and atmosphere. The treatment is largely qualitative, however mass balance calculations were used to estimate the relative mass needed to affect changes in a variety of reservoirs. Although actual impactors probably have a variable composition, the effects of water-, C-, N-, and S-containing objects are discussed. In the atmosphere, effects could include increased rain acidity, increased levels of nutrients, and enhanced greenhouse warming/cooling. Oceanic effects might include increased oceanic productivity (nitrogen-containing objects). As a result of increased chemical weathering and/or greenhouse effects, increased temperatures coupled with enhanced productivity could result in wider-spread oceanic anoxia or altered calcite/aragonite stability. Possible examples of such impacts from the geologic record and potential biotic effects are given.  相似文献   

8.
To discern the effect of the end-Permian (P-Tr) ecological crisis on land, interactions between plants and their insect herbivores were examined for four time intervals containing ten major floras from the Dolomites of northeastern Italy during a Permian–Triassic interval. These floras are: (i) the Kungurian Tregiovo Flora; (ii) the Wuchiapingian Bletterbach Flora; (iii) three Anisian floras; and (iv) five Ladinian floras. Derived plant–insect interactional data is based on 4242 plant specimens (1995 Permian, 2247 Triassic) allocated to 86 fossil taxa (32 Permian, 56 Triassic), representing lycophytes, sphenophytes, pteridophytes, pteridosperms, ginkgophytes, cycadophytes and coniferophytes from 37 million-year interval (23 m.yr. Permian, 14 m.yr. Triassic). Major Kungurian herbivorized plants were unaffiliated taxa and pteridosperms; later during the Wuchiapingian cycadophytes were predominantly consumed. For the Anisian, pteridosperms and cycadophytes were preferentially consumed, and subordinately pteridophytes, lycophytes and conifers. Ladinian herbivores overwhelming targeted pteridosperms and subordinately cycadophytes and conifers. Throughout the interval the percentage of insect-damaged leaves in bulk floras, as a proportion of total leaves examined, varied from 3.6% for the Kungurian (N = 464 leaves), 1.95% for the Wuchiapingian (N = 1531), 11.65% for the pooled Anisian (N = 1324), to 10.72% for the pooled Ladinian (N = 923), documenting an overall herbivory rise. The percentage of generalized consumption, equivalent to external foliage feeding, consistently exceeded the level of specialized consumption from internal feeding. Generalized damage ranged from 73.6% (Kungurian) of all feeding damage, to 79% (Wuchiapingian), 65.5% (pooled Anisian) and 73.2% (pooled Ladinian). Generalized-to-specialized ratios show minimal change through the interval, although herbivore component community structure (herbivore species feeding on a single plant-host species) increasingly was partitioned from Wuchiapingian to Ladinian. The Paleozoic plant with the richest herbivore component community, the coniferophyte Pseudovoltzia liebeana, harbored four damage types (DTs), whereas its Triassic parallel, the pteridosperm Scytophyllum bergeri housed 11 DTs, almost four times that of P. liebeana. Although generalized DTs of P. liebeana were similar to S. bergeri, there was expansion of Triassic specialized feeding types, including leaf mining. Permian–Triassic generalized herbivory remained relatively constant, but specialized herbivores more finely partitioned plant-host tissues via new feeding modes, especially in the Anisian. Insect-damaged leaf percentages for Dolomites Kungurian and Wuchiapingian floras were similar to those of lower Permian, north-central Texas, but only one-third that of southeastern Brazil. Global herbivore patterns for Early Triassic plant–insect interactions remain unknown.  相似文献   

9.

Stable carbon isotope data from brachiopod shells from the Upper Permian Kapp Starostin Formation (West Spitsbergen) indicate that the oceanic carbon isotopic ratio, which had already been very high in the late Permian, rapidly increased by almost 4 per mil and then dramatically declined by more than 10 per mil in the very latest Permian. This pattern is essentially repeated by the oxygen isotope curve. These data show that a geologically rapid switch between two fundamentally different states of the Earth's exosystem occurred near the Permo‐Triassic transition. The late Permian state of the global system was profoundly different from the modern one in that vast amounts of organic carbon were stored, presumably in the form of easy‐to‐mobilize sapropel‐like deposits, below the oceanic redoxcline. Under such conditions—which we propose to call overfed ocean—nutrients were intensely recycled to seawater, thus allowing the ocean to sustain a huge standing crop of the biosphere. Deposition of large amounts of organic carbon in the ocean liberated corresponding amounts of oxygen, thus leading to high oxygen levels in the atmosphere. In the latest Permian, the organic matter decaying in the ocean was subject to rapid oxidation due to appearance of the modern type of ocean which is characterized by vigorous bottom circulation and net heterotrophy. The appearance of these conditions—which we propose to call hungry ocean—led to removal of nutrients from seawater and to a substantial drop in atmospheric oxygen contents. The resulting nutrient deficiency in the ocean, oxygen depletion in the atmosphere, and other effects of this paleoceanographic change must have caused major extinctions.  相似文献   

10.
The greatest mass extinction occurred at the end of the Permian. Most records of the mass extinction are not from pelagic sediments, but from shallow-marine and terrestrial sediments. Although several pelagic sections that span the end-Permian mass extinction have been found, these sections contain few index fossils and are often discontinuous because of small faults. We found the index fossils Albaillella cf. triangularis (Radiolaria) in siliceous claystone beds, Hindeodus parvus (Conodont) in the overlying black claystone beds, and Neospathodus cf. cristagalli and Ns. waageni (Conodont) in the subsequent siliceous claystone beds in Akkamori section-2 in northern Japan. These fossils suggest that this section ranges from the late Permian to the Early Triassic, including the early Induan and Olenekian stages. Furthermore, the lithological changes in the section, i.e., starting from bedded chert through siliceous claystone and black claystone to siliceous claystone, are concordant with those of well-known Permian–Triassic pelagic sequences in Japan. There is no gap between each lithofacie of the Akkamori section-2. Critical lithological continuity between Upper Permian siliceous claystone beds and uppermost Permian to lowermost Triassic black claystone beds of the Akkamori section-2 was recognized by observing hand-polished specimens and thin sections. Such paleontological and sedimentological evidence implies that the Akkamori section-2 is a continuous pelagic section that records the end-Permian mass extinction event. The carbonaceous black claystone beds have high total organic carbon (TOC) concentrations (1.06–3.31 wt.%), suggesting oceanic anoxia at least deep and probably stable primary productivity. A decrease in radiolarian abundance from 26–563 to 0.27–20 specimens/cm2 coincided with an increase in TOC content from 0.01–0.16 to 1.06–3.31 wt.% at the boundary of the siliceous claystone and the overlying black claystone beds near the top of the Permian, implying that radiolarian extinction occurred at the end of the Permian coinciding with oceanic anoxia. Although TOC contents decreased in the early Olenekian (Smithian), radiolarian abundance did not increase at that time, indicating that radiolarian recovery was delayed by > 1.5 m.y.  相似文献   

11.
Paleochemistry of manganese in corals from the Galapagos Islands   总被引:7,自引:0,他引:7  
Approximately 550 measurements of Mn/Ca ratios in three corals from the western Galapagos Islands have been performed to reconstruct a 380-year history of surface ocean variability with respect to this trace element. The time period studied encompasses 1600 A.D. to 1978. Manganese is inferred to be lattice-bound in coralline aragonite at 10–50% of its seawater proportion to calcium; uncertainty about the distribution coefficient stems from inherent variability of oceanic Mn in nearshore settings. Interannual variations at Urvina Bay, Isabela Island are generally small, with the exception of a few decades during the nineteenth century. A large positive Mn/Ca anomaly found between 1821–1830 is hypothesized to have resulted from a major volcanic eruption on nearby Fernandina Island in 1825. On intrannual timescales a pronounced cycle occurs in response to seasonal upwelling. Quarterly changes in Mn/Ca are six months out-of-phase with Cd/Ca variations-a reflection of the opposite distributions of these metals in the upper waters of the eastern Pacific. High frequency reconstructions over brief time intervals from the 17th, 18th, and 20th century reveal that the seasonal onset of warm and cool phases near Galapagos has persisted for at least 340 years. A quantitative assessment of historical changes in upwelling intensity is complicated by offsets in background Mn levels recorded by different corals. One apparent longterm feature is an overall decline in skeletal Mn concentrations from 1600–1978 which results in a net decrease of 20–30%. Several possible explanations exist for this trend, ranging from accumulation of a persistent diagenetic Mn phase in fossil aragonite to a temporal shift in oceanic/atmospheric Mn fluxes reaching the surface waters of the Galapagos Islands.  相似文献   

12.
Global Underwater Census – a large‐scale project is taking stock The Census of Marine Life, an international large‐scale project to assess the diversity of life in the ocean, will end this fall after a decade of discovery with a grand finale in London. Many so‐called field projects were established to study life from tropical beaches, seamounts, hydrothermal vents, to polar seas and abyssal plains in order to get a better estimate of marine species diversity and gain insight into processes that influence the diversity of life in the oceans. Some of the field projects are presented, including the project CeDAMar under the leadership of the Senckenberg Institute. The study area of CeDAMar is abyssal plains, which comprise about half of the Earth's surface yet are very little known. Mankind's growing demand on minerals and other resources has awoken the industry's interest in a part of the ocean that so far has been relatively pristine. CeDAMar scientists have helped with their expertise to establish guidelines for the protection of the seafloor in international waters, thus demonstrating how concrete the influence of deep‐sea exploration on human society can become.  相似文献   

13.
《Palaeoworld》2016,25(4):496-507
The cause for the end Permian mass extinction, the greatest challenge life on Earth faced in its geologic history, is still hotly debated by scientists. The most significant marker of this event is the negative δ13C shift and rebound recorded in marine carbonates with a duration ranging from 2000 to 19 000 years depending on localities and sedimentation rates. Leading causes for the event are Siberian trap volcanism and the emission of greenhouse gases with consequent global warming. Measurements of gases vaulted in calcite of end Permian brachiopods and whole rock document significant differences in normal atmospheric equilibrium concentration in gases between modern and end Permian seawaters. The gas composition of the end Permian brachiopod-inclusions reflects dramatically higher seawater carbon dioxide and methane contents leading up to the biotic event. Initial global warming of 8–11 °C sourced by isotopically light carbon dioxide from volcanic emissions triggered the release of isotopically lighter methane from permafrost and shelf sediment methane hydrates. Consequently, the huge quantities of methane emitted into the atmosphere and the oceans accelerated global warming and marked the negative δ13C spike observed in marine carbonates, documenting the onset of the mass extinction period. The rapidity of the methane hydrate emission lasting from several years to thousands of years was tempered by the equally rapid oxidation of the atmospheric and oceanic methane that gradually reduced its warming potential but not before global warming had reached levels lethal to most life on land and in the oceans. Based on measurements of gases trapped in biogenic and abiogenic calcite, the release of methane (of ∼3–14% of total C stored) from permafrost and shelf sediment methane hydrate is deemed the ultimate source and cause for the dramatic life-changing global warming (GMAT > 34 °C) and oceanic negative-carbon isotope excursion observed at the end Permian. Global warming triggered by the massive release of carbon dioxide may be catastrophic, but the release of methane from hydrate may be apocalyptic. The end Permian holds an important lesson for humanity regarding the issue it faces today with greenhouse gas emissions, global warming, and climate change.  相似文献   

14.
The new genus and species Lutevanaphis permiana gen.n. et sp.n. , represents the oldest Aphidomorpha, new superfamily Lutevanaphidoidea superfam.n. and new family Lutevanaphididae. This taxon is described from the Middle Permian of the Lodève Basin, southern France. The presence of very small Aphidomorpha in the Middle Permian contradicts the hypothesis of the ‘Lilliput effect’ that is presumed to have affected the insect fauna during the Early to Middle Triassic, after the end‐Permian crisis. Very small insects were present well before the end of the Permian; their relative rarity is attributable probably to taphonomic biases.  相似文献   

15.
Bacteria and archaea in the dark ocean (>200 m) comprise 0.3–1.3 billion tons of actively cycled marine carbon. Many of these microorganisms have the genetic potential to fix inorganic carbon (autotrophs) or assimilate single-carbon compounds (methylotrophs). We identified the functions of autotrophic and methylotrophic microorganisms in a vent plume at Axial Seamount, where hydrothermal activity provides a biogeochemical hot spot for carbon fixation in the dark ocean. Free-living members of the SUP05/Arctic96BD-19 clade of marine gamma-proteobacterial sulfur oxidizers (GSOs) are distributed throughout the northeastern Pacific Ocean and dominated hydrothermal plume waters at Axial Seamount. Marine GSOs expressed proteins for sulfur oxidation (adenosine phosphosulfate reductase, sox (sulfur oxidizing system), dissimilatory sulfite reductase and ATP sulfurylase), carbon fixation (ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO)), aerobic respiration (cytochrome c oxidase) and nitrogen regulation (PII). Methylotrophs and iron oxidizers were also active in plume waters and expressed key proteins for methane oxidation and inorganic carbon fixation (particulate methane monooxygenase/methanol dehydrogenase and RuBisCO, respectively). Proteomic data suggest that free-living sulfur oxidizers and methylotrophs are among the dominant primary producers in vent plume waters in the northeastern Pacific Ocean.  相似文献   

16.
17.
A. Hallam 《Historical Biology》2013,25(2-4):257-262
Data from widespread dysaerobic facies, carbon/sulphur ratios and cerium anomalies suggest that the early Triassic was a time when anoxic conditions spread widely over epicontinental seas. These conditions, associated with marine transgression following the latest Permian regression, are likely to be a prime cause of the mass extinction of Palaeozoic marine faunas. The occurrence of many Lazarus taxa in the Middle and Upper Triassic indicates, however, that the extinctions at the end of the Permian were less severe than has been widely assumed, and that the turnover from Palaeozoic to Mesozoic faunas was considerably extended in time, being finally accomplished only after the end‐Triassic mass extinction event.  相似文献   

18.
The evolution of Permian reefs is characterized by the following sequence of events: (1) Late Carboniferous–Cisuralian radiation, (2) early Late Cisuralian (Artinskian–Kungurian) turnover, (3) Guadalupian radiation, (4) end-Guadalupian crisis, (5) Lopingian radiation, (6) end-Lopingian crisis at the PTB (Permian–Triassic boundary), and (7) the at least 7 my (million years) metazoan reef gap during the Early Triassic. The early Late Cisuralian turnover and the end-Guadalupian reef crisis are gradual changes, while the end-Lopingian reef crisis represents an abrupt event. Lopingian reefs occur in a zone from 40 °N to 15 °S, Guadalupian reefs in an extended equatorial zone from 35 °N to 35 °S, and Lopingian reefs in a narrow equatorial zone of 20 °N and 20 °S. This pattern resulted from a network of global and regional control mechanisms including the assemblage of Pangea, the northward drift of continents, the opening of Neo-Tethys, and second-order sea level changes. The mechanism of the extinction has been intensely debated and a combination of the above mentioned long-term changes and abrupt ocean anoxia or hypercapnia (CO2-poisoning) for the end-Guadalupian reef crisis is considered.  相似文献   

19.
The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end‐Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian–Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian–Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, ‘Palaeopterygii’, ‘Subholostei’, Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end‐Guadalupian crisis is not evident from our data, but ‘palaeopterygians’ experienced a significant body size increase across the Guadalupian–Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian–Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, ‘palaeopterygians’, ‘subholosteans’) and a second one during the Middle Triassic (‘subholosteans’, neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a significant reduction in osteichthyan body size. Neopterygii, the clade that encompasses the vast majority of extant fishes, underwent another diversification phase in the Late Triassic. The Triassic radiation of Osteichthyes, predominantly of Actinopterygii, which only occurred after severe extinctions among Chondrichthyes during the Middle–Late Permian, resulted in a profound change within global fish communities, from chondrichthyan‐rich faunas of the Permo‐Carboniferous to typical Mesozoic and Cenozoic associations dominated by actinopterygians. This turnover was not sudden but followed a stepwise pattern, with leaps during extinction events.  相似文献   

20.
Organic-walled dinoflagellate cyst (dinocyst) and geochemical records across the Cenomanian–Turonian boundary (CTB) are presented for the NW European reference section at Eastbourne, England. Dinocyst and nannofossil fertility indexes indicate that an upwelling-driven productivity pulse accompanied a eustatic sea-level fall that preceded, by at least 40 kyr, the global rise in δ13C values that marks the onset of Oceanic Anoxic Event 2 (OAE2) and the deposition of black shales in the deep ocean. A marine productivity collapse in the latest Cenomanian is evidenced by the falling absolute and relative abundance of peridinioid dinocysts, believed to be the product of heterotrophic dinoflagellates. This biotic change accompanied transgression and sharply rising sea-surface temperatures, following an Atlantic-wide episode of short-lived cooling. Geochemical tracers provide evidence of Caribbean–Colombian plateau volcanism. The increase in water depth caused by the latest Cenomanian transgression resulted in less eutrophic waters in epicontinental seas, where CTB biotic turnover was driven largely by water-mass changes rather than oxygen depletion. The species richness/absolute abundance ratio of dinocysts is proposed as a water-mass stability proxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号