首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The summer Phaeocystis antarctica bloom increases under-ice phytoplankton biomass in McMurdo Sound, Antarctica. The magnitude of mesozooplankton grazing on this bloom is unknown, and determines whether this production is available to the pelagic food web. We measured mesozooplankton abundance and body content of dimethylsulfoniopropionate (DMSP) during the McMurdo Sound austral summer (2006 and 2006–2007). Abundance varied from 20 to 4,500 ind. m−3 (biomass 0.02–274.0 mg C m−3), with peaks in mid-December and late-January/February. Abundance was higher but total zooplankton biomass lower in our study compared to previous reports. Copepods and the pteropod Limacina helicina dominated the zooplankton in both abundance and biomass. DMSP was detected in all zooplankton groups, with highest concentrations in copepod nauplii and L. helicina (95 and 54 nmol mg−1 body C, respectively). Experiments suggested that L. helicina obtains DMSP by directly grazing on P. antarctica, which often accumulates to high biomass under the summer sea ice in McMurdo Sound.  相似文献   

2.
One-centimeter-scale vertical sampling of fast ice from McMurdo Sound, Antarctica reveals evidence of progressive nutrient limitation with distance above the ice/water interface. Over the bottom 6 cm photosynthetically active radiation increases by between 1.8 and 3 times, C:N increases from 6.8 to 19.8 and δ13C increases from −18 to −12. Fatty acid composition also changes with a consistent decline in polyunsaturated fatty acids and a rise in saturated fatty acids. These factors all suggest severe and progressive nutrient limitation with distance from the ice/water interface. Accepted: 5 September 1998  相似文献   

3.
Summary Zooplankton was sampled through holes in the sea-ice of McMurdo Sound from 8 November to 10 December, 1985. Replicated vertical hauls were made to 100 and 300 m off Pram Point in the inner Sound, near the edge of the permanent McMurdo Ice Shelf. The zooplankton was sparse, averaging 2.5 mg/m3 wet weight. The numbers of individual species varied between catches, depths, and occasions. Generally, small copepods, particularly Oithona similis, Ctenocalanus citer and Oncaea curvata, numerically dominated the catches, and higher densities of these were present in the shallower 100 m layer. Deeper hauls contained higher numbers of larger crustaceans, particularly copepods Metridia gerlachei, Calanoides acutus and Euchaeta spp., ostracod Conchoecia belgicae and euphausiid Euphausia crystallorophias. Pteropods Limacina helicina and Clione limacina were also consistently caught, but in equal densities in 100 m and 300 m hauls. Numerous other plankters were caught in low numbers, including amphipods, chaetognaths, medusae, radiolarians, and larval nemerteans, barnacles, shrimps, polychaetes and echinoderms. Comparative samples from 40 km further north, off Cape Royds and near the sea edge of the fast sea-ice in Wohlschlag Bay, and to 100 m deep, contained a similar species diversity to those near the McMurdo Ice Shelf, but always with higher densities of L. helicina. On the last sampling occasions, when microalgae were conspicuous under the ice off Cape Royds, there were increased densities of microcopepods and Paralabidocera antarcticus, indicating different ecosystem processes from the inner Sound location.  相似文献   

4.
Summary During the austral summer of 1975–76 and winter of 1977 benthic and water column chlorophyll a and phaeopigments were measured at several sites along the east and west sides of McMurdo Sound, Antarctica. Estimates of in situ primary productivity were made at some McMurdo Sound locations. Additionally, water column samples were collected at 5 stations in the Ross Sea during January, 1976. Standing stock data are analyzed to identify seasonal and spatial patterns. Variability in algal standing stock was related to ambient light levels and appeared to be mediated by ice and snow cover whereby the highest algal standing stock was present under high light conditions (low ice and snow cover, shallow water, summer). Differences in published benthic invertebrate densities appear to be closely allied to differences in benthic primary production, and less so to in situ planktonic ice microalgal production.  相似文献   

5.
J. P. Barry 《Polar Biology》1988,8(5):377-391
Summary Measurements of hydrographic parameters (temperature, salinity, nitrate, nitrite, phosphate, chlorophyll a, phaeophytin, and oxygen) in McMurdo Sound, Antarctica during spring, 1984, before the regional phytoplankton bloom, and summer, 1984, after the peak of the bloom, indicate the several processes contribute to changes in the vertical and horizontal structure of the water column. Regional variation in the source of water masses within the Sound, ice cover patterns, and meltwater from the Ross Ice Shelf and nearby continental glaciers result in east-west and north-south gradients in the thermohaline, nutrient, and productivity characteristics of the Sound. These patterns are also related to the extremely variable structure and productivity of shallow water benthic macrofaunal communities in McMurdo Sound. Hydrographic patterns during Spring (November) were indicative of conditions at the end of winter prior to the spring phytoplankton bloom. The water column was nearly isothermal with temperatures near or below the surface freezing point of seawater with only a slight salinity increase with depth. Salinity was lower in the west Sound than in the east, probably in response to glacial meltwater input from the Ross Ice Shelf and/or terrestrial sources. Nutrient levels were high and nearly homogenous throughout the Sound. Chlorophyll a was low (<1.0 g/l) throughout most of the Sound, but was lowest in the western sound, as expected from the circulation pattern (Barry and Dayton 1988). Oxygen was uniformly low during spring. The summer hydrographic distributions, estimated from samples collected during the decline of the regional plankton bloom, were dramatically different than in during spring. Both the salinity and temperature were vertically stratified at all sites, particularly in the west Sound. Temperatures near the surface were well above the freezing point and occasionally near or above 0°C. Near surface salinity in the western Sound was nearly fresh (0.4 ppt) at some locations in the southwestern Sound. Chlorophyll a was high throughout the Sound relative to spring concentrations, and nutrient levels (NO3, PO4) were strongly depressed near the surface, due mainly to phytoplankton uptake rather than by dilution. Primary productivity estimates based on the summer nitrate and phosphate deficits over 90 days were 1.96–2.02 and 0.39–1.02 gCm-2d-1 for the east and west sound, respectively. Nutrient ratios indicated that glacial meltwater from the Ross Ice Shelf and/or nearby terrestrial sources may be an important component of the summer meltwater input to the western Sound. Enhanced water column stability due to this input may prolong the maintenance of high water column stability as this water mass flows northward and result in particularly high productivity in northern McMurdo Sound.  相似文献   

6.
A slumping event that occurred on permanent transect lines from 12- to 30- m depth located at Arrival Heights, McMurdo Sound, Antarctica in 1993, provided an opportunity to examine the effects of sediment-mediated disturbance on the benthic invertebrate fauna. The disturbance had a particularly significant impact on the soft coral Alcyonium paessleri, which resulted in 84% colony mortality downslope from the slump site compared to an average annual mortality rate of 14% on control transects. In contrast, anchor ice at the same site accounted for removal of 5% of the population in 1992. Laboratory experiments with A. paessleri colonies under conditions of periodic sediment resuspension indicate that the soft corals are susceptible to this form of disturbance. Our observations suggest they are capable of shedding fine silt in the laboratory, which might explain the presence of A. paessleri in soft-sediment sites around McMurdo Sound. However, scarring by larger gravel in laboratory assays was slow to heal and may account for much of the colony mortality we observed. Several invertebrate-barren rocky benthic regions in McMurdo Sound were suggestive of historical slumping events. Given the removal of the smaller grain size sediments from these areas – a typically slow process – it appears these communities are slow to recover. The long-term effects of sedimentation on the benthic communities are unknown, but the impact on A. paessleri, one of the most common and fastest growing species, suggests this disturbance mechanism could lead to significant restructuring of these communities. Received: 29 November 1996 / Accepted: 23 February 1997  相似文献   

7.
The sympagic (=ice-associated) amphipod Gammarus wilkitzkii usually lives attached to the underside of Arctic sea ice. During an expedition to the Greenland Sea in May/June 1997, high numbers of this species were found in pelagic Rectangular Midwater Trawl catches (0–500 m water depth) in an ice-free area, 35–42 km away from the ice edge. The amphipods seemed to have maintained position in the water column for at least 4 days. Mean biomass data (length: 2.9 cm, organic content: 73% dry mass), gut fullness (>50% in 85% of specimens) and sex ratio (females:males = 1:1.5) of these amphipods were very similar to values for under-ice populations. Due to their relatively high body density (mean: 1.134 g cm−3), the energy demand for swimming was assumed to be high. Measurements of oxygen consumption of swimming and resting amphipods (8.8 and 4.0 J g wet mass−1 day−1, respectively) suggested that, from an energetic point of view, G. wilkitzkii would maintain position in an ice-free water column for the time period. Accepted: 11 January 1999  相似文献   

8.
Synopsis Four species of nototheniid fish were sampled from below the sea ice near Cape Armitage, McMurdo Sound:Pagothenia borchgrevinki from just below the ice 1.5 km offshore,Trematomus bernacchii, Trematomus hansoni andTrematomus centronotus from off the bottom in about 20 m of water near the shore. Scale worms and isopods were conspicuous non-planktonic prey, and present in the three benthic fish species. The planktonic pteropod molluscLimacina helicina was numerically common in all four species of fish. The planktonic hyperiid amphipodHyperiella dilatata was also found in all fish species. WhereasP. borchgrevinki is planktivorous in accord with its pelagic habit, theTrematomus spp. clearly also feed on plankton from the water column.T. hansoni is particularly planktivorous, taking smaller copepods thanP. borchgrevinki.  相似文献   

9.
An abundant and diverse bacterial community was found within brine channels of annual sea ice and at the ice-seawater interface in McMurdo Sound, Antarctica, in 1980. The mean bacterial standing crop was 1.4 × 1011 cells m−2 (9.8 mg of C m−2); bacterial concentrations as high as 1.02 × 1012 cells m−3 were observed in ice core melt water. Vertical profiles of ice cores 1.3 to 2.5 m long showed that 47% of the bacterial numbers and 93% of the bacterial biomass were located in the bottom 20 cm of sea ice. Ice bacterial biomass concentration was more than 10 times higher than bacterioplankton from the water column. Scanning electron micrographs showed a variety of morphologically distinct cell types, including coccoid, rod, fusiform, filamentous, and prosthecate forms; dividing cells were commonly observed. Approximately 70% of the ice bacteria were free-living, whereas 30% were attached to either living algal cells or detritus. Interactions between ice bacteria and microalgae were suggested by a positive correlation between bacterial numbers and chlorophyll a content of the ice. Scanning and transmission electron microscopy revealed a close physical association between epibacteria and a dominant ice alga of the genus Amphiprora. We propose that sea ice microbial communities are not only sources of primary production but also sources of secondary microbial production in polar ecosystems. Furthermore, we propose that a detrital food web may be associated with polar sea ice.  相似文献   

10.
The seasonal distribution of sympagic amphipods was investigated in the Chesterfield Inlet area of northwestern Hudson Bay (63°30′N). Amphipod abundance was measured by photographic samples and species composition was determined by sweep net samples. Twelve species of amphipods were collected, the most common being Ischyrocerus anguipes, Pontogeneia inermis, Apherusa megalops and Weyprechtia pinguis. The major environmental variable affecting amphipod distribution was water depth. Amphipod abundance was highest near 20 m and near zero past 50 m. The maximum recorded abundance was 1367 m−2. A minor factor affecting the distribution of amphipods was snow depth, through its modifying effect on light and thereby the growth of ice algae. Amphipods began to inhabit the sea ice shortly after its formation. From the beginning of March, the number of amphipods on the ice increased steadily to about the 3rd week of April, after which numbers declined. This pattern coincided with the seasonal ice algae abundance. Amphipods reduced ice algal biomass over 20-m depth by 63%. No evidence of diurnal changes in abundance was observed. Received: 15 May 1996 / Accepted: 4 November 1996  相似文献   

11.
A. McMinn 《Polar Biology》1996,16(4):301-307
 Algae released from fast-ice in Ellis Fjord, eastern Antarctica, made little contribution to subsequent phytoplankton growth. Dominant taxa in the interior ice community included Nitzschia cylindrus (Grun) Hasle, Navicula glaciei V.H. and a dinoflagellate cyst. Diatom mortality within the ice was high. The algal contribution to the phytoplankton from the fast ice was estimated by calculating the difference between algal biomass in ice cores taken on 14 November with those taken on 18 December 1992. The biomass of sedimenting phytoplankton was estimated using sediment traps; weekly cell counts of water were used to monitor net phytoplankton growth. The low contribution from the fast-ice of Ellis Fjord to the phytoplankton is similar to results from other Antarctic fast-ice communities but is not necessarily reflective of processes occurring within either Antarctic or Arctic pack ice communities. An algal mat growing on the base of the fast-ice had a carbon standing crop of between 0.231 gC m-2 and 0.022 gC m-2. Much of this was delivered to the water column as the ice melted while the remainder was exported. Received: 15 March 1995/Accepted: 4 September 1995  相似文献   

12.
Arctic sea ice is inhabited by several amphipod species. Abundance, biomass and small-scale distribution of these cryopelagic (=ice associated) amphipods were investigated near Franz Josef Land in summer 1994. The mean abundance of all species was 420 ind./m2; the mean biomass was 10.61 g ww/m2. Gammarus wilkitzkii was the dominant species, whereas Apherusa glacialis, Onisimus nanseni and O. glacialis were only scarcely found. Amphipods were concentrated at the edges of ice floes and were less frequent in areas further away under the ice. The relationship between the distribution and ecological/physiological requirements of cryopelagic amphipods, as well as the small-scale morphology of Arctic sea ice, are discussed. Received: 14 January 1998 / Accepted 14 April 1998  相似文献   

13.
 Samples collected from Lake Fryxell, southern Victoria Land, Antarctica in January 1992 and 1994 were analysed for the abundance of bacterioplankton and the diversity and abundance of protistan plankton. At the times of sampling, 14 ciliate species and 10 species of autotrophic flagellate were recorded. The samples contained two species of rotifer (Philodina spp.), which formed the first record of planktonic metazoans in the Dry Valley lakes of this region of Antarctica. Bacterial concentrations ranged between 1.0 and 3.8×108 l-1 in the upper oxic waters increasing to 20×108 l-1 in the anoxic waters. Heterotrophic flagellates decreased in abundance down the oxygenated water column, disappearing completely at 9 m, and ranged between 0.28 and 7.39×105 l-1 in abundance. Autotrophic flagellates were much more abundant exhibiting a number of distinct peaks down the water column (1.89–25.3×108 l-1). The ciliated protozoa were very abundant (up to 7720 l-1) in relation to flagellate and bacterial numbers, typical of oligotrophic lakes world-wide. The distribution of the protistan plankton showed marked zonation, probably in response to the differing salinity and temperature gradients in the water column. Possible trophic interactions are discussed and comparisons with other continental Antarctic lakes made. Received: 29 November 1995/Accepted: 18 February 1996  相似文献   

14.
Survival of some polar fishes is associated with high levels of circulating antifreeze glycoproteins (AFGPs). AFGP prevent ice growth giving rise to thermal hysteresis. The inhibiting action of AFGPs implies that polar fish contain ice to which AFGPs adsorb. Cryopelagic Pagothenia borchgrevinki, inhabiting the ice-laden waters of McMurdo Sound, Antarctica, were assayed for ice and ice was found on skin, gills, in the intestine, and in the spleen. Two methods used to assess the number of ice crystals in spleens gave comparable results (12.1 +/− 1.9 and 22 +/− 3.8 per spleen). Attempts were made to measure the rate of uptake of ice by P. borchgrevinki held in cages immediately beneath the sub-ice platelet layer in McMurdo Sound; uptake was sporadic. Introduction of ice into fish by spray freezing a small patch of the integument resulted in detection of splenic ice after 1 h, illustrating that a mechanism exists for ice transport from the periphery to the spleen. Splenic ice did not seem to be eliminated from fish held in ice-free water at − 1.6 °C for approximately two months. The relatively small number of splenic ice crystals and the slow rate of ice uptake suggest efficient ice barriers exist in P. borchgrevinki.  相似文献   

15.
 Diatom composition and biomass were investigated in the nearshore water (<30 m in depth) of Maxwell Bay, Antarctica during the 1992/1993 austral summer. Epiphytic or epilithic diatoms such as Fragilaria striatula, Achnanthes brevipes var. angustata and Licmophora spp. dominated the water column microalgal populations. Within the bay, diatom biomass in surface water was several times higher at the nearshore (2.4–14 μg C l-1) than at the offshore stations (>100 m) (1.2–3.2 μg C l-1) with a dramatic decrease towards the bay mouth. Benthic forms accounted for >90% of diatom carbon in all nearshore stations, while in the offshore stations planktonic forms such as Thalassiosira antarctica predominated (50–>90%). Microscopic examination revealed that many of these diatoms have become detached from a variety of macroalgae growing in the intertidal and shallow subtidal bottoms. Epiphytic diatoms persistently dominated during a 19-day period in the water column at a fixed nearshore station, and the biomass of these diatoms fluctuated from 0.86 to 53 μg C l-1. A positive correlation between diatom biomass and wind speed strongly suggests that wind-driven resuspension of benthic forms is the major mechanism increasing diatom biomass in the water column. Received: 28 April 1995/Accepted: 1 April 1996  相似文献   

16.
Twenty-eight specimens of the large notothenioid Dissostichus mawsoni were dissected after capture on a set line near the southern limit of its range in McMurdo Sound, Antarctica. Total length (L T) averaged 127.3 cm (range 90–162 cm) and weight (W ) was 26.7 kg (range 10.4–60.3 kg). The length-weight relationship was W=3.44×10−5 L T 2.85 (n=28, r 2=0.96). Subcutaneous lipid thickness averaged 2.6 mm and showed no difference due to sex, but a significant weak relationship to W and L T. Hepatosomatic index (I H) was 1.6% for females and 1.7% for males; gonadosomatic index (I G) was 0.9% for females and 0.2% for males. Although specimens were large and sexually mature, the histology indicated that the gonads of this November sample were in a resting stage. Testes lacked spermatids and spermatozoa. Oocytes were in the previtellogenic stage (91.2%) or in the first stage of vitellogenesis (8.8%). A few atretic oocytes and empty follicles indicated that some females in this sample had spawned previously. A summary of the life-cycle is also presented. Accepted: 27 September 1999  相似文献   

17.
Summary The distribution and scavenging habits of the two most abundant lysianassid amphipods in McMurdo Sound differ markedly. Orchomene plebs lives primarily in deep water (>100 m), where planktonic and benthic food is sparser and scavenging events are less common and predictable than in shallower water. Orchomene plebs is common in shallow areas (<100 m) only under the Ross Ice Shelf and along the western McMurdo Sound. Here Weddell seals frequent tidal cracks in which they discard carrion and defecate; otherwise food is scarce. Orchomene pinguides lives on shallow (<10 m) wave-cut benches that are rich in food along the eastern McMurdo Sound. They, along with other omnivorous invertebrates which scavenge the food-rich eastern sound benches, are rare from shallow water along the western sound. The eastern benches are bathed by dense plankton blooms and harbor a high biomass of benthic diatoms and invertebrates. Scavenging events there were observed throughout the year. Orchomene plebs is larger and more motile, and came to laboratory carrion and baited field traps more rapidly and in greater numbers than O. pinguides. The crop contents of O. plebs contained only amorphous organic matter that suggested a scavenging habit. Crops of O. pinguides contained not only amorphous organic matter but also invertebrate prey, especially planktonic copepods that impact the bottom during winter.  相似文献   

18.
A. McMinn  A. Martin  K. Ryan 《Polar Biology》2010,33(11):1547-1556
The phytoplankton and sea ice algal communities at the end of winter in McMurdo Sound were dominated by Fragilariopsis sublineata, with Thalassiosira antarctica, Melosira adele, Pinnularia quadreata, Entomoneis kjellmannii and heterotrophic dinoflagellates also present. Sea ice algal biomass at the end of winter was very low, only 0.050 ± 0.019 mg chla m−2 in 2007 and 0.234 ± 0.036 mg chla m−2 in 2008, but this increased to 0.377 ± 0.078 mg chla m−2 by early October in 2007 and to 1.07 ± 0.192 by late September in 2008. Under ice phytoplankton biomass remained consistently below 0.1 μg chla l−1 throughout the measuring period in both years. The photosynthetic parameters Fv/Fm, rETRmax and α document microalgal communities that are mostly healthy and well adapted to their low light under ice environment. Our results also suggest that species such as Fragilariopsis sublineata are well adapted to deal with low winter light levels but are unlikely to survive an increase in irradiance, whereas other taxa, such as Thalassiosira antarctica, will do better in a higher light environment.  相似文献   

19.
Little is known of the wider Antarctic distribution of the upper fast ice community now comprehensively described from McMurdo Sound. We determined the fast ice protist community at Davis Station, East Antarctica and compared it with that of McMurdo Sound. As at McMurdo Sound, Davis fast ice is characterised by extreme and transitory salinities (96–2.5 psu) and temperatures (−4.5 to −0.1°C) during the spring/summer transition. Both communities are dominated by Polarella glacialis (an autotrophic dinoflagellate), chrysophytes and their life cycle stages. Furthermore, the physical parameters of brine temperature and salinity at which these successions occurred approximated those of McMurdo Sound. The high degree of similarity between the communities from the geographically disparate locations indicates that this community type has a circum-Antarctic distribution. Confirming the areal extent and seasonality of this community type will assist in future predictions of sea ice productivity.  相似文献   

20.
Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes – in this case algal photosynthesis – to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号