首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of tau isoform expression and dementia   总被引:8,自引:0,他引:8  
In the central nervous system (CNS), aberrant changes in tau mRNA splicing and consequently in protein isoform ratios cause abnormal aggregation of tau and neurodegeneration. Pathological tau causes neuronal loss in Alzheimer's disease (AD) and a diverse group of disorders called the frontotemporal dementias (FTD), which are two of the most common forms of dementia and afflict more than 10% of the elderly population. Autosomal dominant mutations in the tau gene cause frontotemporal dementia with parkinsonism-chromosome 17 type (FTDP-17). Just over half the mutations affect tau protein function and decrease its affinity for microtubules (MTs) or increase self-aggregation. The remaining mutations occur within exon 10 (E10) and intron 10 sequences and alter complex regulation of E10 splicing by multiple mechanisms. FTDP-17 splicing mutations disturb the normally balanced levels of distinct protein isoforms that result in altered biochemical and structural properties of tau. In addition to FTDP-17, altered tau isoform levels are also pathogenically associated with other FTD disorders such as progressive supranuclear palsy (PSP), corticobasal degeneration and Pick's disease; however, the mechanisms remain undefined and mutations in tau have not been detected. FTDP-17 highlights the association between splicing mutations and the pronounced variability in pathology as well as phenotype that is characteristic of inherited disorders.  相似文献   

2.
Mutations in microtubule-associated protein tau recently have been identified in familial cases of frontotemporal dementia (FTD). We report the frequency of tau mutations in a large population-based study of FTD carried out in the Netherlands from January 1994 to June 1998. Thirty-seven patients had >/=1 first-degree relative with dementia. A mutation in the tau gene was found in 17.8% of the group of patients with FTD and in 43% of patients with FTD who also had a positive family history of FTD. Three distinct missense mutations (G272V, P301L, R406W) accounted for 15.6% of the mutations. These three missense mutations, and a single amino acid deletion (DeltaK280) that was detected in one patient, strongly reduce the ability of tau to promote microtubule assembly. We also found an intronic mutation at position +33 after exon 9, which is likely to affect the alternative splicing of tau. Tau mutations are responsible for a large proportion of familial FTD cases; however, there are also families with FTD in which no mutations in tau have been found, which indicates locus and/or allelic heterogeneity. The different tau mutations may result in disturbances in the interactions of the protein tau with microtubules, resulting in hyperphosphorylation of tau protein, assembly into filaments, and subsequent cell death.  相似文献   

3.
4.
Characteristic tau isoform composition of the insoluble fibrillar tau inclusions define tauopathies, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and frontotemporal dementia with parkinsonism linked to chromosome 17/frontotemporal lobar degeneration‐tau (FTDP‐17/FTLD‐tau). Exon 10 splicing mutations in the tau gene, MAPT, in familial FTDP‐17 cause elevation of tau isoforms with four microtubule‐binding repeat domains (4R‐tau) compared to those with three repeats (3R‐tau). On the basis of two well‐characterised monoclonal antibodies against 3R‐ and 4R‐tau, we developed novel, sensitive immuno‐PCR assays for measuring the trace amounts of these isoforms in CSF. This was with the aim of assessing if CSF tau isoform changes reflect the pathological changes in tau isoform homeostasis in the degenerative brain and if these would be relevant for differential clinical diagnosis. Initial analysis of clinical CSF samples of PSP (= 46), corticobasal syndrome (CBS;= 22), AD (= 11), Parkinson's disease with dementia (PDD;= 16) and 35 controls revealed selective decreases of immunoreactive 4R‐tau in CSF of PSP and AD patients compared with controls, and lower 4R‐tau levels in AD compared with PDD. These decreases could be related to the disease‐specific conformational masking of the RD4‐binding epitope because of abnormal folding and/or aggregation of the 4R‐tau isoforms in tauopathies or increased sequestration of the 4R‐tau isoforms in brain tau pathology.  相似文献   

5.
A hexanucleotide repeat expansion in C9ORF72 has been established as a common cause of frontotemporal dementia (FTD). However, the minimum repeat number necessary for disease pathogenesis is not known. The aims of our study were to determine the frequency of the C9ORF72 repeat expansion in two FTD patient collections (one Australian and one Spanish, combined n = 190), to examine C9ORF72 expansion allele length in a subset of FTD patients, and to examine C9ORF72 allele length in ‘non-expansion’ patients (those with <30 repeats). The C9ORF72 repeat expansion was detected in 5–17% of patients (21–41% of familial FTD patients). For one family, the expansion was present in the proband but absent in the mother, who was diagnosed with dementia at age 68. No association was found between C9ORF72 non-expanded allele length and age of onset and in the Spanish sample mean allele length was shorter in cases than in controls. Southern blotting analysis revealed that one of the nine ‘expansion-positive’ patients examined, who had neuropathologically confirmed frontotemporal lobar degeneration with TDP-43 pathology, harboured an ‘intermediate’ allele with a mean size of only ∼65 repeats. Our study indicates that the C9ORF72 repeat expansion accounts for a significant proportion of Australian and Spanish FTD cases. However, C9ORF72 allele length does not influence the age at onset of ‘non-expansion’ FTD patients in the series examined. Expansion of the C9ORF72 allele to as little as ∼65 repeats may be sufficient to cause disease.  相似文献   

6.
The aim of the present study was to investigate the relation between neurogenesis, cell cycle reactivation and neuronal death during tau pathology in a novel tau transgenic mouse line THY-Tau22 with two frontotemporal dementia with parkinsonism linked to chromosome-17 mutations in a human tau isoform. This mouse displays all Alzheimer disease features of neurodegeneration and a broad timely resolution of tau pathology with hyperphosphorylation of tau at younger age (up to 6 months) and abnormal tau phosphorylation and tau aggregation in aged mice (by 10 months). Here, we present a follow-up of cell cycle markers with aging in control and transgenic mice from different ages. We show that there is an increased neurogenesis during tau hyperphosphorylation and cell cycle events during abnormal tau phosphorylation and tau aggregation preceding neuronal death and neurodegeneration. However, besides phosphorylation, other mechanisms including tau mutations and changes in tau expression and/or splicing may be also involved in these mechanisms of cell cycle reactivation. Altogether, these data suggest that cell cycle events in THY-Tau22 are resulting from neurogenesis in young animals and cell death in older ones. It suggests that neuronal cell death in such models is much more complex than believed.  相似文献   

7.
Alzheimer's disease is characterised by the degeneration of selected populations of nerve cells that develop filamentous inclusions prior to degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias, such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The discovery of mutations in the tau gene in familial frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) has provided a direct link between tau dysfunction and dementing disease. Known mutations produce either a reduced ability of tau to interact with microtubules, or an overproduction of tau isoforms with four microtubule-binding repeats. This leads in turn to the assembly of tau into filaments similar or identical to those found in Alzheimer's disease brain. Several missense mutations also have a stimulatory effect on heparin-induced tau filament formation. Assembly of tau into filaments may be the gain of toxic function that is believed to underlie the demise of affected brain cells.  相似文献   

8.
Frontotemporal dementia (FTD) is the second most common form of dementia. It affects the frontal and temporal lobes of the brain and has a highly heterogeneous clinical representation with patients presenting with a wide range of behavioral, language, and executive dysfunctions. Etiology of FTD is complex and consists of both familial and sporadic cases. Heterozygous mutations in the GRN gene, resulting in GRN haploinsufficiency, cause progranulin (PGRN)-deficient FTD characterized with cytoplasmic mislocalization of TAR DNA-binding protein 43 kDa (TDP-43) aggregates. GRN codes for PGRN, a secreted protein that is also localized in the endolysosomes and plays a critical role in regulating lysosomal homeostasis. How PGRN deficiency modulates immunity and causes TDP-43 pathology and FTD-related neurodegeneration remains an active area of intense investigation. In the current review, we discuss some of the significant progress made in the past two years that links PGRN deficiency with microglial-associated neuroinflammation, TDP-43 pathology, and lysosomal dysfunction. We also review the opportunities and challenges toward developing therapies and biomarkers to treat PGRN-deficient FTD.  相似文献   

9.
Mutations of the progranulin (GRN) gene are a major cause of familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). We studied the spatial patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and neuronal intranuclear inclusions (NII) in histological sections of the frontal and temporal lobe in eight cases of FTLD-TDP with GRN mutation using morphometric methods and spatial pattern analysis. In neocortical regions, the NCI were clustered and the clusters were regularly distributed parallel to the pia mater; 58% of regions analysed exhibiting this pattern. The NII were present in regularly distributed clusters in 35% of regions but also randomly distributed in many areas. In neocortical regions, the sizes of the regular clusters of NCI and NII were 400-800 μm, approximating to the size of the modular columns of the cortico-cortical projections, in 31% and 36% of regions respectively. The NCI and NII also exhibited regularly spaced clustering in sectors CA1/2 of the hippocampus and in the dentate gyrus. The clusters of NCI and NII were not spatially correlated. The data suggest degeneration of the cortico-cortical and cortico-hippocampal pathways in FTLD-TDP with GRN mutation, the NCI and NII affecting different clusters of neurons.  相似文献   

10.
Six tau isoforms differing in their affinity for microtubules are produced by alternative splicing from the MAPT (microtubule-associated protein tau) gene in adult human brain. Several MAPT mutations causing the familial tauopathy, FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17), affect alternative splicing of exon 10, encoding a microtubule-binding motif. Advanced RNA analysis methods have suggested that levels of exon 10-containing MAPT mRNA are elevated in Alzheimer's disease. Furthermore, the MAPT H1 haplotype, associated with Alzheimer's disease, promotes exon 10 inclusion in MAPT mRNA. Thus an accurate regulation of tau alternative splicing is critical for the maintenance of neuronal viability, and its alteration might be a contributing factor to Alzheimer's disease. Tau alternative splicing could represent a target for therapeutic intervention to delay the progression of pathology in familial as well as sporadic tauopathies.  相似文献   

11.
Abnormal tau-containing filaments in neurodegenerative diseases   总被引:1,自引:0,他引:1  
It has been known for some time that the neurofibrillary pathology in Alzheimer's disease consists of so-called paired helical and straight filaments made up of the microtubule-associated protein tau. The degree of dementia observed in the disease correlates better with the extent of neurofibrillary pathology than with the Abeta amyloid deposits, the other characteristic defining pathological fibrous deposit in Alzheimer's disease. However, no familial cases of Alzheimer's disease have been genetically linked to the tau protein locus. Recently a group of frontotemporal dementias with parkinsonism linked to chromosome 17 has been shown to be caused by mutations in the tau gene. Some are missense mutations giving altered tau proteins, whereas others affect the splicing of the pre-mRNA and change the balance between different tau isoforms. Histologically these diseases are all characterised by various kinds of filamentous tau protein deposits, mostly in the complete absence of Abeta deposits. The abnormal tau filaments show different morphologies, depending on the nature of the tau mutation. These diseases show that tau mutations can be a prime cause of inherited dementing illness and may throw some light on the pathological process in the much larger number of sporadic cases of Alzheimer's disease.  相似文献   

12.
Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer’s disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes. These results closely matched the causal immune function and microglial gene-regulatory network recently identified in AD. We identified additional gene expression changes by laser microdissecting specific regions of the hippocampus, which highlighted alterations in neuronal network activity. Expression of inflammatory genes and markers of neuronal activity changed as a function of age in rTg4510 mice and coincided with behavioral deficits. Inflammatory changes were tau-dependent, as they were reversed by suppression of the tau transgene. Our results suggest that the alterations in microglial phenotypes that appear to contribute to the pathogenesis of Alzheimer’s disease may be driven by tau dysfunction, in addition to the direct effects of beta-amyloid.  相似文献   

13.
Alzheimer's disease and Parkinson's disease are the most common neurodegenerative diseases. They are characterized by the degeneration of selected populations of nerve cells that develop filamentous inclusions before degeneration. The neuronal inclusions of Alzheimer's disease are made of the microtubule-associated protein tau, in a hyperphosphorylated state. Recent work has shown that the filamentous inclusions of Parkinson's disease are made of the protein alpha-synuclein and that rare, familial forms of Parkinson's disease are caused by missense mutations in the alpha-synuclein gene. Besides Parkinson's disease, the filamentous inclusions of two additional neurodegenerative diseases, namely dementia with Lewy bodies and multiple system atrophy, have also been found to be made of alpha-synuclein. Abundant filamentous tau inclusions are not limited to Alzheimer's disease. They are the defining neuropathological characteristic of frontotemporal dementias such as Pick's disease, and of progressive supranuclear palsy and corticobasal degeneration. The recent discovery of mutations in the tau gene in familial forms of frontotemporal dementia has provided a direct link between tau dysfunction and dementing disease. The new work has established that tauopathies and alpha-synucleinopathies account for most late-onset neurodegenerative diseases in man. The formation of intracellular filamentous inclusions might be the gain of toxic function that leads to the demise of affected brain cells.  相似文献   

14.
Microtubule-associated Tau proteins are the basic component of intraneuronal and glial inclusions observed in many neurological disorders, the so-called tauopathies. Many etiological factors, phosphorylation, splicing, and mutations, relate Tau proteins to neurodegeneration. Molecular analysis has revealed that hyperphosphorylation and abnormal phosphorylation might be one of the important events in the process leading to tau intracellular aggregation. Specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution, could characterize five main classes of tauopathies. A direct correlation has been established between the regional brain distribution of tau pathology and clinical symptoms; for instance progressive involvement of neocortical areas is well correlated to the severity of dementia in Alzheimer's disease, overall suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. Recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies. Overall, a better knowledge of the etiological factors responsible for the aggregation of tau proteins in brain diseases is essential for development of future differential diagnosis and therapeutic strategies. They would hopefully find their application against Alzheimer's disease but also in all neurological disorders for which a dysfunction of Tau biology has been identified.  相似文献   

15.
16.
Abnormal deposits of tau protein accumulate in glia in many neurodegenerative diseases. This suggests that in some instances the disease process may target glial tau, with neuronal degeneration a secondary consequence of this process. In this report, we summarize the pattern of glial tau pathology in various neurodegenerative disorders and add original findings from a case of sporadic frontotemporal dementia that exhibits astrocytic tau pathology. The neurodegenerative diseases span the spectrum of relative neuronal and glial tau involvement, from disorders affecting only neuronal tau to those in which abnormal tau deposits are found only in glia. From this, we conclude that glial tau can be a primary target of the disease process, and that this can lead to neuronal degeneration.  相似文献   

17.
Pathologic alterations in the microtubule-associated protein tau have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Here, we show that tau overexpression, in combination with phosphorylation by the Drosophila glycogen synthase kinase-3 (GSK-3) homolog and wingless pathway component (Shaggy), exacerbated neurodegeneration induced by tau overexpression alone, leading to neurofibrillary pathology in the fly. Furthermore, manipulation of other wingless signaling molecules downstream from shaggy demonstrated that components of the Wnt signaling pathway modulate neurodegeneration induced by tau pathology in vivo but suggested that tau phosphorylation by GSK-3beta differs from canonical Wnt effects on beta-catenin stability and TCF activity. The genetic system we have established provides a powerful reagent for identification of novel modifiers of tau-induced neurodegeneration that may serve as future therapeutic targets.  相似文献   

18.
The most common degenerative diseases of the human brain are characterized by the presence of abnormal filamentous inclusions in affected nerve cells and glial cells. These diseases can be grouped into two classes, based on the identity of the major proteinaceous components of the filamentous assemblies. The filaments are made of either the microtubule-associated protein tau or the protein alpha-synuclein. Importantly, the discovery of mutations in the tau gene in familial forms of frontotemporal dementia and of mutations in the alpha-synuclein gene in familial forms of Parkinson's disease has established that dysfunction of tau protein and alpha-synuclein can cause neurodegeneration.  相似文献   

19.
Filamentous inclusions made of the microtubule-associated protein tau in a hyperphosphorylated state are a defining feature of a large number of human neurodegenerative diseases. Here we show that (trans,trans)-1-fluoro-2,5-bis(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), a fluorescent Congo red derivative, labels tau inclusions in tissue sections from a mouse line transgenic for human P301S tau and in cases of familial frontotemporal dementia and sporadic Pick's disease. Labelling by FSB required the presence of tau filaments. More importantly, tau inclusions in the spinal cord of human P301S tau transgenic mice were labelled following a single intravenous injection of FSB. These findings indicate that FSB can be used to detect filamentous tau in vivo.  相似文献   

20.
Intracellular filamentous inclusions made of either the microtubule-associated protein tau or the protein alpha-synuclein define the majority of cases of neurodegenerative disease. Mutations in the tau gene in familial forms of frontotemporal dementia and in the alpha-synuclein gene in familial cases of Parkinson's disease have provided causal links between the dysfunction of these proteins and neurodegeneration. Over the past year, several novel tau gene mutations have been identified and more has been learned about possible mechanisms by which tau gene mutations lead to frontotemporal dementia. Experimental animal models have provided a link between tau filament formation and nerve cell degeneration. Along similar lines, animal models have been produced that result in the formation of alpha-synuclein filaments and the degeneration of dopaminergic nerve cells. Building on previous work, synthetic alpha-synuclein filaments have been shown to exhibit the characteristics of amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号