首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mouse lipin gene, Lpin1, is important for adipose tissue development and is a candidate gene for insulin resistance. Here, we investigate the adipose tissue expression levels of the human LPIN1 gene in relation to various clinical variables as well as adipocyte function. LPIN1 gene expression was induced at an early step in human preadipocyte differentiation in parallel with peroxisome proliferator-activated receptor gamma. Lipin mRNA levels were higher in fat cells than in adipose tissue segments but showed no difference between subcutaneous and omental depots. Moreover, LPIN1 expression levels were reduced in obesity, improved following weight reduction in obese subjects, and were downregulated in women with the metabolic syndrome. With respect to adipocyte function, adipose LPIN1 gene expression was strongly associated with both basal and insulin-mediated subcutaneous adipocyte glucose transport as well as mRNA levels of glucose transporter 4 (GLUT4). We show that body fat accumulation is a major regulator of human adipose LPIN1 expression and suggest a role of LPIN1 in human preadipocyte as well as mature adipocyte function.  相似文献   

2.
Factors which regulate expression of the haptoglobin (acute phase reactant) gene in adipocytes have been examined using 3T3-L1 cells. Haptoglobin expression was observed by Northern blotting in each of the major white adipose tissue depots of mice (epididymal, subcutaneous, mesenteric, and perirenal) and in interscapular brown fat. Expression occurred in mature adipocytes, but not in the stromal-vascular fraction. In 3T3-L1 cells, haptoglobin mRNA was detected from day 4 after the induction of differentiation into adipocytes. Lipopolysaccharide and the cytokines, TNFalpha and interleukin-6, resulted in substantial increases in haptoglobin mRNA in 3T3-L1 adipocytes; the increase (7-fold) was highest with TNFalpha. Increases in haptoglobin mRNA level were also induced by dexamethasone, noradrenaline, isoprenaline, and a beta3-adrenoceptor agonist. In contrast, haptoglobin mRNA was reduced by nicotinic acid and the PPARgamma agonist, rosiglitazone. RT-PCR showed that the haptoglobin gene was expressed in human adipose tissue (subcutaneous, omental). It is concluded that haptoglobin gene expression in adipocytes is stimulated by inflammatory cytokines, glucocorticoids, and the sympathetic system, while activation of the PPARgamma nuclear receptor is strongly inhibitory.  相似文献   

3.
Adipose tissue contains a stroma that can be easily isolated. Thus, human adipose tissue presents an source of multipotent stromal cells. In order to determine the implication of hematopoietic markers in adipocyte biology, we have defined part of the phenotype of the human adipose tissue-derived stromal cells, and compared this to fully differentiated adipocytes. Flow cytometry demonstrates that the protein expression phenotype of both cell types are similar and includes the expression of CD10, CD13, CD34, CD36, CD55, CD59 and CD65. No significant difference between subcutaneous and omental adipose tissue could be demonstrated concerning the expression of these markers. However, the expression of CD34, CD36 and CD65 is cell-dependent. While the expression of CD36 and CD65 doubled between stromal cells and mature adipocytes, the expression of CD34 decreased, despite this protein being present on the mature adipocyte. As CD34 is described as a stem cell marker and it being unlikely to be expressed on differentiated cells, this result was confirmed by immunostaining and western blot. The clear function of this protein on the adipocyte membrane remains to be determined. The characterization of new proteins on mature adipocytes could have broad implications for the comprehension of the biology of this tissue.  相似文献   

4.
5.
The objective of this study was to characterize differences in the secretome of human omental compared with subcutaneous adipose tissue using global gene expression profiling. Gene expression was measured using Affymetrix microarrays (Affymetrix, Santa Clara, CA) in subcutaneous and omental adipose tissue in two independent experiments (n = 5 and n = 3 independent subjects; n = 16 arrays in total, 2 for each subject). Predictive bioinformatic algorithms were employed to identify secreted proteins. Microarray analysis identified 22 gene probe sets whose expression was significantly different with a fold change (FC) greater than 5 in expression in both experiments between omental and subcutaneous adipose tissue. Using bioinformatic predictive programs 11 of these 22 probe sets potentially coded for secreted proteins. Pathway network analysis of the secreted proteins showed that three of the proteins are part of a common pathway network. These proteins gremlin 1 (GREM1), pleiotrophin (PTN), and secretory leukocyte peptidase inhibitor (SLPI) are expressed respectively 43×, 23×, and 5× in omental adipose tissue relative to subcutaneous adipose tissue as determined by real-time PCR. The presence of GREM1, PTN, and SLPI protein in human adipose tissue was confirmed by western blotting. All three proteins are expressed in the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell line. The expression of GREM1, PTN, and SLPI changed with the differentiation of the preadipocytes into mature adipocytes. Gene expression coupled with predictive bioinformatic algorithms have identified several genes coding for secreted proteins which are expressed differently in omental adipose tissue compared to subcutaneous adipose tissue proving a valid alternative approach to help further define the adipocyte secretome.  相似文献   

6.
Zhou X  Li D  Yin J  Ni J  Dong B  Zhang J  Du M 《Journal of lipid research》2007,48(8):1701-1709
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has previously been shown to be able to decrease porcine subcutaneous (SC) adipose tissue levels while increasing the count of intramuscular (IM) adipose tissue in vivo. However, the underlying mechanisms through which it acts are poorly understood. The objective of this study was to investigate the different effects of CLA on adipogenesis in cultured SC adipose tissue and IM stromal vascular cells obtained from neonatal pigs. As shown here, trans-10, cis-12 CLA decreased the expression of adipocyte-specific genes as well as adipose precursor cell numbers and the accumulation of lipid in cultured SC adipose tissue stromal vascular cells. However, the cis-9, trans-11 CLA did not alter adipogenesis in SC cultures. On the other hand, both CLA isomers increased the expression of adipocyte-specific genes in IM cultures, together with the increasing accumulation of lipid and Oil Red O-stained cells. Collectively, these data show that CLA decreases SC adipose tissue but increases IM adipose tissue by different regulation of adipocyte-specific gene expression. These results suggest that adipogenesis in IM adipocytes differs from that in SC adipocytes.  相似文献   

7.
The sympathetic nervous system plays a central role in lipolysis and the production of leptin in white adipose tissue (WAT). In this study, we have examined whether nerve growth factor (NGF), a target-derived neurotropin that is a key signal in the development and survival of sympathetic neurons, is expressed and secreted by white adipocytes. NGF mRNA was detected by RT-PCR in the major WAT depots of mice (epididymal, perirenal, omental, mesenteric, subcutaneous) and in human fat (subcutaneous, omental). In mouse WAT, NGF expression was observed in mature adipocytes and in stromal vascular cells. NGF expression was also evident in 3T3-L1 cells before and after differentiation into adipocytes. NGF protein, measured by ELISA, was secreted from 3T3-L1 cells, release being higher before differentiation. Addition of the sympathetic agonists norepinephrine, isoprenaline, or BRL-37344 (beta(3)-agonist) led to falls in NGF gene expression and secretion by 3T3-L1 adipocytes, as did IL-6 and the PPARgamma agonist rosiglitazone. A substantial decrease in NGF expression and secretion occurred with dexamethasone. In contrast, LPS increased NGF mRNA levels and NGF secretion. A major increase in NGF mRNA level (9-fold) and NGF secretion (相似文献   

8.
To study the molecular basis of tissue-specific expression of the GLUT4/muscle-fat facilitative glucose transporter gene, we generated lines of transgenic mice carrying 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene fused to a chloramphenicol acetyltransferase (CAT) reporter gene (hGLUT4[2.4]-CAT). This reporter gene construct was specifically expressed in tissues that normally express GLUT4 mRNA, which include both brown and white adipose tissues as well as cardiac, skeletal, and smooth muscle. In contrast, CAT reporter activity was not detected in brain or liver, two tissues that do not express the GLUT4 gene. In addition, the relative levels of CAT mRNA driven by the human GLUT4 promoter in various tissues of these transgenic animals mirrored those of the endogenous mouse GLUT4 mRNA. Since previous studies have observed alterations in GLUT4 mRNA levels induced by fasting and refeeding (Sivitz, W. I., DeSautel, S. L., Kayano, T., Bell, G. I., and Pessin, J. E. (1989) Nature 340, 72-74), the regulated expression the hGLUT4[2.4]-CAT transgene was also assessed in these animals. Fasting was observed to decrease CAT activity in white adipose tissue which was super-induced upon refeeding. These alterations in CAT expression occurred in parallel to the changes in endogenous mouse GLUT4 mRNA levels. Although CAT expression in skeletal muscle and brown adipose tissue was unaffected, the endogenous mouse GLUT4 mRNA was also refractory to the effects of fasting/refeeding in these tissues. These data demonstrate that 2.4 kilobases of the 5'-flanking region of the human GLUT4 gene contain all the necessary sequence elements to confer tissue-specific expression and at least some of the sequence elements controlling the hormonal/metabolic regulation of this gene.  相似文献   

9.
Two fatty acid binding proteins (FABPs) are expressed in adipose tissue, adipocyte lipid binding protein (ALBP) and keratinocyte lipid binding protein (KLBP). This study investigated FABP expression in visceral and subcutaneous human adipose tissue depots and associations with lipolytic differences between the depots and circulating insulin concentrations. ALBP and KLBP (protein and RNA) were quantified in subcutaneous and omental adipose tissue from obese individuals and expressed relative to actin. ALBP RNA and protein expression was significantly higher in subcutaneous compared to omental adipose tissue (both p < 0.05), whereas KLBP RNA and protein expression was no different between the two sites. There were significant inverse correlations between serum insulin concentrations and the ALBP/KLBP RNA ratio in both subcutaneous and omental adipose tissue (both p < 0.02). Basal rates of glycerol and fatty acid release measured in adipocytes isolated from subcutaneous and omental adipose tissue were significantly higher in the former (p 0.02). Therefore the relative ALBP/KLBP content of human adipose tissue is different in different adipose tissue depots and at the RNA level is related to the circulating insulin concentration, at least in obese subjects. The higher rates of basal lipolysis in adipocytes isolated from subcutaneous compared to omental adipose tissue might be related to the increased ALBP content of the former. Therefore adipose tissue FABPs are interesting candidates for investigation to further our understanding of the insulin resistance syndrome and regulation of lipolysis.  相似文献   

10.
In all mammals, white adipose tissue (WAT) and brown adipose tissue (BAT) are found together in several fat depots, forming a multi-depot organ. Adrenergic stimulation induces an increase in BAT usually referred to as “browning”. This phenomenon is important because of its potential use in curbing obesity and related disorders; thus, understanding its cellular mechanisms in humans may be useful for the development of new therapeutic strategies. Data in rodents have supported the direct transformation of white into brown adipocytes. Biopsies of pure white omental fat were collected from 12 patients affected by the catecholamine-secreting tumor pheochromocytoma (pheo-patients) and compared with biopsies from controls. Half of the omental fat samples from pheo-patients contained uncoupling protein 1 (UCP1)-immunoreactive-(ir) multilocular cells that were often arranged in a BAT-like pattern endowed with noradrenergic fibers and dense capillary network. Many UCP1-ir adipocytes showed the characteristic morphology of paucilocular cells, which we have been described as cytological marker of transdifferentiation. Electron microscopy showed increased mitochondrial density in multi- and paucilocular cells and disclosed the presence of perivascular brown adipocyte precursors. Brown fat genes, such as UCP1, PR domain containing 16 (PRDM16) and β3-adrenoreceptor, were highly expressed in the omentum of pheo-patients and in those cases without visible morphologic re-arrangement. Of note, the brown determinant PRDM16 was detected by immunohistochemistry only in nuclei of multi- and paucilocular adipocytes. Quantitative electron microscopy and immunohistochemistry for Ki67 suggest an unlikely contribution of proliferative events to the phenomenon. The data support the idea that, in adult humans, white adipocytes of pure white fat that are subjected to adrenergic stimulation are able to undergo a process of direct transformation into brown adipocytes. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

11.
目的:棕色脂肪组织活化和白色脂肪组织棕化是改善减肥的良好策略。本研究利用冷刺激作为阳性对照,观察京尼平对小鼠脂肪组织活化与棕化的作用。方法:8周龄雄性C57BL/6J小鼠30只,随机分为正常对照组、京尼平组、冷刺激组, 每组10只。京尼平组小鼠腹腔注射给予京尼平处理(15 mg/(kg·d),连续9 d),对照组用生理盐水处理,冷刺激组小鼠在室温(22℃±2℃)下处理4 d后,置于4℃环境中进行冷刺激处理5 d(24 h/d)。检测各组小鼠每天摄食量、体重和体温变化,取肩胛下区、腹股沟区及附睾周围部分脂肪组织观察形态学的变化,测定棕色脂肪组织、皮下白色脂肪组织以及内脏白色脂肪组织解偶联蛋白1(UCP1)的表达。结果:与正常对照组相比,京尼平组小鼠白色脂肪湿重下降16%,冷刺激组下降28%,均有明显差异(P<0.05);京尼平组和冷刺激组白色脂肪组织颜色变深,HE染色显示脂肪细胞内的脂滴变小,数量增加;京尼平组小鼠的皮下、内脏白色脂肪组织和棕色3种脂肪组织中的UCP1表达量均明显增加(P<0.05)。结论:京尼平通过上调UCP1的表达促进棕色脂肪组织活化和白色脂肪组织棕化,此效应是京尼平降脂减轻体重的作用机制之一。  相似文献   

12.
13.
14.
Omental and subcutaneous adipose tissue steroid levels in obese men   总被引:4,自引:0,他引:4  
We examined plasma and fat tissue sex steroid levels in a sample of 28 men aged 24.8-62.2 years (average BMI value of 46.3 +/- 12.7 kg/m(2)). Abdominal adipose tissue biopsies were obtained during general or obesity surgery. Omental and subcutaneous adipose tissue steroid levels were measured by gas chromatography and chemical ionization mass spectrometry after appropriate extraction procedures. BMI and waist circumference were negatively correlated with plasma testosterone (r = -0.49 and -0.50, respectively, p < 0.01) and dihydrotestosterone (r = -0.58 and -0.56, respectively, p < 0.01), and positively associated with estrone levels (r = 0.64 and 0.62, respectively, p < 0.001). Regional differences in adipose tissue steroid levels were observed for dihydrotestosterone (p < 0.005), androstenedione (p < 0.0001) and dehydroepiandrosterone levels (p < 0.05), which were all significantly more concentrated in omental versus subcutaneous fat. Positive significant associations were found between circulating level of a steroid and its concentration in omental and subcutaneous adipose tissue, for estrone (r = 0.72 and 0.57, respectively, p < 0.01), testosterone (r = 0.66 and 0.58, respectively, p < 0.01) and dihydrotestosterone (r = 0.58 and 0.45, respectively, p < 0.05). Positive correlations were observed between plasma dehydroepiandrosterone-sulfate and omental (r = 0.56, p < 0.01) as well as subcutaneous adipose tissue dehydroepiandrosterone level (r = 0.38, p = 0.05). Positive significant associations were found between omental adipocyte responsiveness to positive lipolytic stimuli (isoproterenol, dibutyryl cyclic AMP and forskolin) and plasma or omental fat tissue androgen levels. In conclusion, although plasma androgen or estrogen levels are strong correlates of adipose tissue steroid content both in the omental and subcutaneous fat depots, regional differences may be observed. Androgen concentration differences in omental versus subcutaneous adipose tissue suggest a depot-specific impact of these hormones on adipocyte function and metabolism.  相似文献   

15.
侯增淼  孙超 《生物工程学报》2008,24(8):1361-1366
根据GenBank已发表的人、小鼠及大鼠GPR43(G protein-coupled receptor 43)基因序列, 设计并合成一对引物, RT-PCR扩增获得猪GPR43基因cDNA, 并利用PCR技术检测该基因在不同猪种、不同发育阶段、不同部位脂肪组织及原代脂肪细胞中的转录表达规律。结果显示, 成功克隆猪GPR43 cDNA片段, 长度为486 bp (GenBank登陆号为EU122439); 同源性分析发现, 猪GPR43与人、小鼠和大鼠同源性达83%以上; GPR43 mRNA表达量在脂肪型猪种上显著高于瘦肉型猪种, 随月龄增长表达量逐渐上升, 且皮下脂肪表达量较内脏脂肪高; 在猪前体脂肪细胞诱导分化过程中, GPR43 mRNA表达量呈时间依赖性升高。揭示GPR43 mRNA表达与猪肥胖程度、年龄、脂肪沉积部位以及脂肪细胞分化程度密切相关。  相似文献   

16.
17.
Resistin release by human adipose tissue explants in primary culture   总被引:16,自引:0,他引:16  
Resistin, also known as Fizz3 or ADSF, is a protein found in murine adipose tissue and inflammatory lung exudates. The present studies found that resistin was released by explants of human adipose tissue but the release was quite variable ranging from 3 to 158 ng/g over 48 h. The release of resistin was 250% greater by explants of omental than by explants of human subcutaneous abdominal adipose tissue. Resistin release by adipocytes was negligible as compared to that by the non-fat cells of adipose tissue. Leptin formation by adipocytes was 8-fold greater than its formation by the non-fat cells, while the formation of PAI-1 by adipocytes was 38% of that by the non-fat cells. The conversion of glucose to lactate as well as the formation of PGE(2) and IL-8 was approximately 15% of that by the non-fat cells. In contrast the release of IL-6 and IL-1beta by adipocytes was 4-7% of that by the non-fat cells while the formation of resistin and IL-10 by adipocytes was 2% of that by non-fat cells. The release of adiponectin by explants ranged from 1000 to 5000 ng/g over 48 h but did not correlate with that of resistin. The present data suggest that resistin release by explants of human adipose tissue in primary culture is largely derived from the non-fat cells present in the explants.  相似文献   

18.
To investigate the expression of the endocannabinoid 1 and 2 receptors by human adipocyte cells of omental and subcutaneous fat tissue, as well as to determine whether these receptors are functional. The expression of CB1 and CB2 receptors on human adipocytes was analyzed by western blotting, immunohistology and immunocytology. We also investigated intracytoplasmic cyclic AMP level modulation following CB1 and CB2 receptor stimulation by an enzymatic immuno assay. All mature adipocytes, from visceral (epiploon) and subcutaneous fat tissue, express CB1 and CB2 on their plasma membranes. We also demonstrate in this study that adipocyte precursors (pre-adipocytes) express CB1 and CB2 on their plasma membranes and that both receptors are functional. Activation of CB1 increases intracytoplasmic cyclic AMP whilst CB2 activation leads to a cyclic AMP decrease. Here we demonstrate, for the first time, that adipocytes of human adipose tissue (mature adipocytes and pre-adipocytes) express functional plasma membrane CB1 and CB2 receptors. Their physiological role on the adipose tissue is not known. However, their major involvement in the physiology of other tissues leads us to suppose that they could play a significant role in the homeostasis of the energy balance and/or in the regulation of adipose tissue inflammation.  相似文献   

19.
Hypoxia modulates the production of key inflammation-related adipokines and may underlie adipose tissue dysfunction in obesity. Here we have examined the effects of hypoxia on glucose transport by human adipocytes. Exposure of adipocytes to hypoxia (1% O2) for up to 24 h resulted in increases in GLUT-1 (9.2-fold), GLUT-3 (9.6-fold peak at 8 h), and GLUT-5 (8.9-fold) mRNA level compared to adipocytes in normoxia (21% O2). In contrast, there was no change in GLUT-4, GLUT-10 or GLUT-12 expression. The rise in GLUT-1 mRNA was accompanied by a substantial increase in GLUT-1 protein (10-fold), but there was no change in GLUT-5; GLUT-3 protein was not detected. Functional studies with [3H]2-deoxy-d-glucose showed that hypoxia led to a stimulation of glucose transport (4.4-fold) which was blocked by cytochalasin B. These results indicate that hypoxia increases monosaccharide uptake capacity in human adipocytes; this may contribute to adipose tissue dysregulation in obesity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号