首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Capsaicinoids are pungent compounds found in pepper (Capsicum spp.) fruits. Capsaicin showed antimicrobial activity in plate assays against seven isolates of five species of fungi and nine isolates of two species of oomycetes. The general trend was that oomycetes were more inhibited than fungi. Assays of capsaicin biosynthetic precursors suggest that the lateral chain of capsaicinoids has more inhibitory activity than the phenolic part. In planta tests of capsaicinoids (capsaicin and N‐vanillylnonanamide) applied to the roots demonstrated that these compounds conferred protection against the pathogenic fungus Verticillium dahliae and induced both chitinase activity and expression of several defence‐related genes, such as CASC1, CACHI2 and CABGLU. N‐Vanillylnonanamide infiltrated into cotyledons confers systemic protection to the upper leaves of pepper against the fungal pathogen Botrytis cinerea. In wild‐type tomato plants such cotyledon infiltration has no protective effect, but is effective in the Never‐ripe tomato mutant impaired in ethylene response. A similar effect was observed in tomato after salicylic acid infiltration.  相似文献   

3.
The aim of the present study was to examine the efficacy of various seed extracts of Terminalia chebula as an antifungal potential against certain important plant pathogenic fungi. The organic extracts of methanol, ethyl acetate and chloroform at the used concentration of 1500 ppm/disc revealed remarkable antifungal effect as a fungal mycelial growth inhibitor against Fusarium oxysporum, Fusarium solani, Phytophthora capsici and Botrytis cinerea, in the range of 41.6–61.3%, along with MIC values ranging from 62.5 to 500 μg/ml. Also, the extracts had a strong detrimental effect on spore germination of all the tested plant pathogens along with concentration as well as time-dependent kinetic inhibition of B. cinerea. The results obtained from this study suggest that the natural products derived from Terminalia chebula could become an alternative to synthetic fungicides for controlling such important plant pathogenic fungi.  相似文献   

4.
Aiming at discovering effective biocontrol agents (BCAs) against grey mold on tomato caused by Botrytis cinerea Pers., we selected 819 bacterial isolates from the surface as well as the interior of the roots, stems, and leaves of tomato plants grown in B. cinerea-infested fields. In a dual-culture assay, 116 isolates (14.16%) showed antagonism against B. cinerea and fewer ones against five additional tomato-associated fungal pathogens – Pythium ultimum, Phytophthora capsici, Fusarium oxysporum f. sp. lycopersici, Sclerotinia sclerotiorum and Ralstonia solanacearum. Thirty-one isolates with antagonism to B. cinerea and at least one of the five additional pathogens were assessed for their efficacy in controlling grey mold on tomato in a greenhouse test. Thirteen of them attained the efficacy over 50% and were subjected to the second greenhouse test, in which 12 isolates consistently accomplished the biocontrol efficacy over 50%, with isolates ABc28 and ABc22 achieving the efficacy of 66.71% and 64.90%, respectively. Under greenhouse conditions, the above two as well as isolates ABc2, ABc11 and ABc17 increased tomato biomass by more than 20% in comparison with the control. The 12 antagonistic isolates accomplishing the biocontrol efficacy over 50% in both greenhouse tests were considered potential BCAs against grey mold, which were identified as Pseudomonas spp., Pantoea spp., Bacillus spp. and Chryseobacterium spp. Ten of them were found to produce at least one of the three hydrolytic enzymes (protease, cellulase and chitinase) and/or siderophore, which might be involved in their mechanisms of suppressing the disease. Based on the origin of these 12 strains, the leaf tissue, especially the leaf interior, of tomato plants grown in a B. cinerea-infested field appears to be a good source of potential BCAs against grey mold.  相似文献   

5.
Phytophthora blight caused by Phytophthora capsici is a serious disease in the production of peppers and other vegetables worldwide. Application of fungicides is an important component in developing effective disease management programmes. However, resistance in P. capsici populations to some commonly used fungicides has been documented. Identification of effective new fungicides with different mode of actions is highly desirable. This study was conducted to determine baseline sensitivity of P. capsici isolates to oxathiapiprolin, the first member of a new class of isoxazoline fungicides, and efficacy of this compound for reduction of Phytophthora blight on bell pepper. A collection of 126 P. capsici isolates were evaluated and all the isolates were sensitive to oxathiapiprolin. EC50 values of oxathiapiprolin in inhibiting mycelial growth, sporangium formation and zoospore germination of 25 selected isolates averaged 0.001, 0.0003 and 0.54 µg mL?1, respectively. It appeared that asexual life stages of P. capsici were more sensitive to oxathiapiprolin than other compounds used for control of oomycete pathogens. In field studies, oxathiapiprolin applied at different rates through drip irrigation tubes, or by soil drench plus foliar sprays, reduced Phytophthora blight and increased pepper yield significantly. This is the first report of the efficacy of oxathiapiprolin in suppression of P. capsici, which indicates that oxathiapiprolin is effective in inhibiting the pathogen and has the promise to be a viable option for managing Phytophthora blight in bell pepper production.  相似文献   

6.
Abstract

In order to evaluate the potential of naturally occurring filamentous fungi having potential as biocontrol agents effective against grey mould and post-harvest fruit rot caused by Botrytis cinerea on tomato, fungal saprophytes were isolated. They were obtained from leaves, fruits and flowers belonging to different species of cultivated and spontaneous Solanaceous plants collected at the horticultural area of La Plata, Argentina. Of 300 isolates screened for inhibition of B. cinerea using the dual culture technique on agar plate, 12 strains inhibited strongly mycelial growth of the pathogen. Among the antagonists one isolate of Epicoccun nigrum (126), four of Trichoderma harzianum (110, 118, 248 and 252) and four isolates of Fusarium spp. decreased the spore germination of B. cinerea between 30 and 70%. These isolates were probed on tomato fruits to evaluate their biocontrol activity against post-harvest grey mould. In growth chamber tests, E. nigrum (27), F. equiseti (22, 105) and T. harzianum (118, 252) reduced the diameter of fruit lesions by 50 – 90% and were selected for further biocontrol assays of tomato plants in the greenhouse. Although there were not significant differences between the treatments and the control, F. equiseti (105), E. nigrum (27) and T. harzianum (118) reduced by 20, 22 and 22 respectively the disease on whole plants. The targeted application of isolates of E. nigrum, T. harzianum and F. equiseti provides a promising alternative to the use of fungicide spray to control B. cinerea on tomatoes.  相似文献   

7.
Aims: Previously, we selected a bacterial strain (GSE09) antagonistic to Phytophthora capsici on pepper, which produced a volatile compound (2,4‐di‐tert‐butylphenol), inhibiting the pathogen. In this study, we identified strain GSE09 and characterized some of the biological traits of this strain in relation to its antagonistic properties against P. capsici. In addition, we examined bacterial colonization on the root surface or in rhizosphere soil and the effect of various concentrations of the volatile compound and strain GSE09 on pathogen development and radicle infection as well as radicle growth. Methods and Results: Strain GSE09 was identified as Flavobacterium johnsoniae, which forms biofilms and produces indolic compounds and biosurfactant but not hydrogen cyanide (HCN) with little or low levels of antifungal activity and swimming and swarming activities. Fl. johnsoniae GSE09 effectively colonized on pepper root, rhizosphere, and bulk (pot) soil, which reduced the pathogen colonization in the roots and disease severity in the plants. Various concentrations of 2,4‐di‐tert‐butylphenol or strain GSE09 inhibited pathogen development (mycelial growth, sporulation, and zoospore germination) in I‐plate (a plastic plate containing a center partition). In addition, germinated seeds treated with the compound (1–100 μg ml?1) or the strain (102–1010 cells ml?1) significantly reduced radicle infection by P. capsici without radicle growth inhibition. Conclusions: These results indicate that colonization of pepper root and rhizosphere by the Fl. johnsoniae strain GSE09, which can form biofilms and produce indolic compounds, biosurfactant, and 2,4‐di‐tert‐butylphenol, might provide effective biocontrol activity against P. capsici. Significance and Impact of the Study: To our knowledge, this is the first study demonstrating that the Fl. johnsoniae strain GSE09, as a potential biocontrol agent, can effectively protect pepper plants against P. capsici infection by colonizing the roots.  相似文献   

8.
ABSTRACT

Black pepper endophytic Pseudomonas putida BP25 produced diverse antimicrobial volatile organic compounds having potential for plant disease management. Chemically synthesised volatiles such as 2, 5-dimethyl pyrazine; 2-methyl pyrazine; dimethyl trisulphide; 2-ethyl 5-methyl pyrazine; and 2-ethyl 3, 6-dimethyl pyrazine showed inhibitory activity against oomycete pathogens, Phytophthora capsici & Pythium myriotylum; fungal pathogens, Rhizoctonia solani, Colletotrichum gloeosporioides, Athelia rolfsii, Gibberella moniliformis & Magnaporthe oryzae; bacterial pathogen, Ralstonia pseudosolanacearum and plant parasitic nematode, Radopholus similis. Among them, dimethyl trisulphide completely inhibited oomycete and fungal pathogens as well as R. similis at a concentration of 2.65?µg?cm?3 under in vitro conditions. Pyrazines suppressed Phytophthora lesions on shoot cuttings of black pepper upon in planta volatile treatment. Dimethyl trisulphide was the only compound that exhibited soil fumigant activity against P. capsici, R. solani and A. rolfsii (6.25?µg?cm?3), C. gloeosporioides and G. moniliformis (12.5?µg?cm?3), and R. similis (50?µg?cm?3). Altogether, endophytic Pseudomonas putida BP25 and its volatile organic compounds offer an alternative strategy for eco-friendly disease management in agriculture.  相似文献   

9.
Resistance induction on pepper and tomato after dipping roots into watersoluble elicitor Fractions issued from Phytophthora casici culture filtrate are generally tested for the elicitor activity on detached cotyledons, Another technic is proposed: young plants (pepper or tomato) are uprooted and their roots dipped into elicitor; after detaching the foliar organs, resistance induction is controlled against Phytophthora capsici or Phytophthora infestans. With pepper, dipping time optimum is about 48 hours; the leaves are better protected than the cotyledons. After elicitation and transplanting, resistance induction remains at the level of the leaves during about one month (50% protection) and decreases progressively beyond. Systemicity of induction is discussed and several hypothesis proposed.  相似文献   

10.
Phytophthora capsici is an oomycete known as the causal agent of wilting disease in Capsicum spp., which causes rotting of roots, crowns, stems, leaves and fruits. To date, little is known about the production of phytotoxic metabolites by P. capsici or their role in the infection process. As part of a project directed towards the isolation and identification of phytotoxins produced by a strain of P. capsici pathogenic to habanero pepper (Capsicum chinense), we have evaluated the effect of factors such as aeration, light and culture medium on the production of mycelium and phytotoxic metabolites by P. capsici. The results showed that culturing P. capsici in potato dextrose broth (PDB) containing habanero pepper leaf infusion, in the dark and under still conditions, results in a high production of mycelium and a high phytotoxicity of the culture filtrate, in the shortest period of time.  相似文献   

11.
由灰葡萄孢(Botrytis cinerea)引起的灰霉病是番茄生产中最重要的病害之一,当前使用的杀菌剂因药物残留、病原菌抗药性及食品安全等原因逐渐受到限制。因此,利用拮抗微生物的生物防治逐渐成为灰霉病防控的有效策略。【目的】从番茄植株体内筛选具有抗病促生特性内生菌株并对其生防潜力进行评估,为开发番茄灰霉病生物防治新策略提供理论依据。【方法】采用组织分离法在番茄植株不同部位分离出内生细菌、真菌,结合16SrRNA和ITS序列分析,对候选菌株进行初步鉴定;通过菌株对峙培养、果实离体接种筛选对灰葡萄孢具有拮抗活性的内生菌;进一步测定菌株分泌生长素、嗜铁素的能力及其对拟南芥和番茄幼苗生长的促生特性。【结果】从番茄植株不同部位共分离出72株内生细菌和31株内生真菌,通过平板对峙法筛选出1株对多种病原菌具有较好抑菌活性的内生细菌FQ-G3,分子鉴定为Bacillus velezensis。FQ-G3对灰葡萄孢抑菌率达80.93%,并显著抑制灰葡萄孢在番茄果实上的扩展。该菌株能够分泌生长素、蛋白酶和嗜铁素,且对拟南芥、番茄幼苗具有明显的促生效果。【结论】本研究表明分离自番茄植株的内生菌FQ-G3具...  相似文献   

12.
In 1974/75, 13 sprays of 0·2% a.i. thiram applied at 14 day intervals to overwintered salad onions reduced the incidence of Botrytis cinerea and significantly increased onion yields. In 1977/78 both B. cinerea and B. squamosa occurred, and 12 iprodione sprays at 0·1% a.i. applied at 14-day intervals or 6 sprays at 0·2% a.i. applied at 28-day intervals gave good control of B. cinerea and B. squamosa and significantly increased onion yields. Benomyl (0·1% a.i. at 14-day intervals, or 0·2% a.i. at 28-day intervals) failed to control either pathogen because of the development of carbendazim-insensitive strains of the fungi. Effective control of both pathogens and increased yields were obtained with an application of 0·4% a.i. thiram in October and November followed by an application of 0·2% a.i. iprodione in December and January.  相似文献   

13.
Aims: Plant growth‐promoting Pseudomonas putida strain 267, originally isolated from the rhizosphere of black pepper, produces biosurfactants that cause lysis of zoospores of the oomycete pathogen Phytophthora capsici. The biosurfactants were characterized, the biosynthesis gene(s) partially identified, and their role in control of Phytophthora damping‐off of cucumber evaluated. Methods and Results: The biosurfactants were shown to lyse zoospores of Phy. capsici and inhibit growth of the fungal pathogens Botrytis cinerea and Rhizoctonia solani. In vitro assays further showed that the biosurfactants of strain 267 are essential in swarming motility and biofilm formation. In spite of the zoosporicidal activity, the biosurfactants did not play a significant role in control of Phytophthora damping‐off of cucumber, since both wild type strain 267 and its biosurfactant‐deficient mutant were equally effective, and addition of the biosurfactants did not provide control. Genetic characterization revealed that surfactant biosynthesis in strain 267 is governed by homologues of PsoA and PsoB, two nonribosomal peptide synthetases involved in production of the cyclic lipopeptides (CLPs) putisolvin I and II. The structural relatedness of the biosurfactants of strain 267 to putisolvins I and II was supported by LC‐MS and MS‐MS analyses. Conclusions: The biosurfactants produced by Ps. putida 267 were identified as putisolvin‐like CLPs; they are essential in swarming motility and biofilm formation, and have zoosporicidal and antifungal activities. Strain 267 provides excellent biocontrol activity against Phytophthora damping‐off of cucumber, but the lipopeptide surfactants are not involved in disease suppression. Significance and Impact of the Study: Pseudomonas putida 267 suppresses Phy. capsici damping‐off of cucumber and provides a potential supplementary strategy to control this economically important oomycete pathogen. The putisolvin‐like biosurfactants exhibit zoosporicidal and antifungal activities, yet they do not contribute to biocontrol of Phy. capsici and colonization of cucumber roots by Ps. putida 267. These results suggest that Ps. putida 267 employs other, yet uncharacterized, mechanisms to suppress Phy. capsici.  相似文献   

14.
Aims: This study aimed to investigate the effect of copper sulfate (from 0 to 8 mmol kg?1) on radial growth rate and lag time of two moulds responsible for vine grapes spoilage: Penicillium expansum strain 25·03 and Botrytis cinerea, strains BC1 and BC2. Methods and results: A new model was developed to describe tailing and shoulders in the inhibition curves. Because of tailing, the minimum inhibitory concentration (MIC), was not defined as the concentration at which no growth was observed, but as the concentration at which the lag time was infinite. The concentrations at which μ = μopt/2, (Cu50), were in the range of 2·2–2·6 mmol kg?1. Radial growth rate of P. expansum and the reciprocal of the lag time were linearly correlated (r = 0·84). In contrast, in the range 0–4 mmol kg?1, an inhibition of growth of B. cinerea was observed whereas germination remained unaffected (i.e. the lag time was constant). In the range 4–8 mmol kg?1, the radial growth rate of B. cinerea was almost constant (c. 1 mm day?1), but germination was inhibited (i.e. the lag time was increased). Conclusions: The MIC values were 4·7 mmol kg?1 for P. expansum, 8·2 and 7·3 mmol kg?1 for B. cinerea strain BC1 and BC2, respectively, demonstrating that some isolates of these moulds are resistant to copper. Significance and Impact of the Study: Copper concentrations at 4 mmol kg?1 would be sufficient to control the development of these isolates, but the toxicity of copper should be extended to other isolates and evaluated in vineyards.  相似文献   

15.
Hong JK  Hwang BK 《Protoplasma》2002,219(3-4):131-139
Summary. Immunoblot analysis and immunogold labeling of PR-1 protein (pathogenesis-related protein 1) in tomato (Lycopersicon esculentum Mill.) were performed to examine the temporal and spatial expression patterns of PR-1 protein induced by Phytophthora capsici infection. Soluble proteins with molecular masses of 10, 17, 25, 27 and 75 kDa were induced and accumulated in P. capsici-infected stem tissues during the compatible and incompatible interactions. Western blot analysis revealed that expression of PR-1 protein (17 kDa), at 12 to 24 h after inoculation, occurred earlier in the incompatible than in the compatible interaction. Immunogold labeling of PR-1 proteins occurred over cell walls and cytoplasm of the host and the oomycete pathogen and at the interface between host and oomycete cell walls at 24 h after inoculation in the compatible interaction. In the incompatible interaction, numerous PR-1 proteins accumulated predominantly over oomycete cell walls and at the interface between host and oomycete cell walls. The quantity of PR-1 proteins deposited in both host and oomycete cells was much less in the compatible than the incompatible interaction. Healthy tomato stem tissue was nearly free of immunogold labeling of PR-1 proteins. Received October 9, 2001 Accepted January 18, 2002  相似文献   

16.
Chili pepper (Capsicum annum L.) is an important economic crop that is severely destroyed by the filamentous oomycete Phytophthora capsici. Little is known about this pathogen in key chili pepper farms in Punjab province, Pakistan. We investigated the genetic diversity of P. capsici strains using standard taxonomic and molecular tools, and characterized their colony growth patterns as well as their disease severity on chili pepper plants under the greenhouse conditions. Phylogenetic analysis based on ribosomal DNA (rDNA), β-tubulin and translation elongation factor 1α loci revealed divergent evolution in the population structure of P. capsici isolates. The mean oospore diameter of mating type A1 isolates was greater than that of mating type A2 isolates. We provide first evidence of an uneven distribution of highly virulent mating type A1 and A2 of P. capsici that are insensitive to mefenoxam, pyrimorph, dimethomorph, and azoxystrobin fungicides, and represent a risk factor that could ease outpacing the current P. capsici management strategies.  相似文献   

17.
Functional analysis of an extracellular catalase of Botrytis cinerea   总被引:3,自引:0,他引:3  
There is evidence that the necrotrophic fungal pathogen Botrytis cinerea is exposed to oxidative processes within plant tissues. The pathogen itself also generates active oxygen species and H2O2 as pathogenicity factors. Our aim was to study how the pathogen may defend itself against cellular damage caused by the accumulation of H2O2 and the role of an extracellular catalase in its detoxification during the infection of tomato and bean plants by B. cinerea. Chloronaphthol staining followed by light microscopy showed that H2O2 accumulates in the infection zone in tomato and bean leaves. An extracellular catalase gene (denominated Bccat2) was cloned from B. cinerea. Exposure of mycelium to H2O2 in liquid culture resulted in increased Bccat2 mRNA levels in a concentration-dependent manner. Bccat2 mRNA was detected at early stages of tomato leaf infection, suggesting that B. cinerea experiences oxidative stress. Bccat2-deficient mutants were generated by transformation-mediated gene disruption. Mutants were more sensitive then the wild-type strain to H2O2in vitro, but they partly compensated for the absence of BcCAT2 by activating other protective mechanisms in the presence of H2O2. Bccat2-deficient mutants did not display a consistent reduction of virulence on bean and tomato leaves. Cerium chloride staining of infected leaf tissue for ultrastructural studies showed that Bccat2-deficient mutants were exposed to H2O2 comparably to the wild-type. The results suggest that B. cinerea is a robust pathogen adapted to growing in hostile oxidizing environments in host tissues.  相似文献   

18.
The fungal pathogen Botrytis cinerea causes severe rots on tomato fruit during storage and shelf life. Biological control of postharvest diseases of fruit may be an effective alternative to chemical control. Yeasts are particularly suitable for postharvest use, proving to be highly effective in reducing the incidence of fungal pathogens. Yeast fungi isolated from the surface of solanaceous plants were evaluated for their activity in reducing the postharvest decay of tomato caused by B. cinerea. Of 300 isolates, 14 strains of Rhodotorula rubra and Candida pelliculosa were found to be strongly antagonistic to the pathogen in vitro and were selected for further storage experiment. The antagonists were evaluated for their effect on the biological control of postharvest grey mould. Artificially wounded fruits were treated by means of a novel technique: small sterile discs of filter paper imbibed separately in suspensions of each yeast and the pathogen were superposed onto each wound. After 1‐week, 11 isolates were significantly effective in reducing the diameter of lesions by more than 60% compared to the control treated with B. cinerea alone. Total protection was obtained with the strain 231 of R. rubra on fruits challenged with pathogen spores. To our knowledge, R. rubra and C. pelliculosa have not been described as biocontrol agents against grey mould caused by B. cinerea. Our data demonstrate that the application of antagonistic yeasts represents a promising and environmentally friendly alternative to fungicide treatments to control postharvest grey mould of tomato.  相似文献   

19.
The oomycete Phytophthora capsici causes wilting disease in chilli pepper and another solanaceous plants, with important economic consequences. Although much investigation has been conducted about this pathogen, little is still known about which of its proteins are involved in the infection process. In this study, the bioassay‐guided fractionation of the secretome of P. capsici resulted in the purification of a phytotoxic protein fraction designated as p47f, capable of inducing wilting and necrosis on leaves of Capsicum chinense Jacq, and having a 47 kDa polypeptide with proteolytic activity as the major component. The isolated p47f fraction induced DNA degradation and decreased cell survival of C. chinense cell suspension culture. Sequencing of p47f indicated the presence of 15 proteins, which could be grouped into seven classes including a protease group, cell wall remodelling proteins and the transglutaminase elicitor M81D, among others. This is the first report of P. capsici secreting proteins that modulate cell responses mediated by ROS in the host.  相似文献   

20.
Naturally occurring endophytic bacteria from black pepper vines were found to exhibit strong antagonistic activities against Phytophthora capsici and Radopholus similis. In order to deliver these bacterial strains, as well as to produce disease-free plantlets of black pepper, a pre-plant stem and root bacterisation was standardised. Stem bacterisation with endophytic Pseudomonas spp. was found to suppress P. capsici infection (over 90% reduction in lesion length) on cut shoots. Pre-plant root bacterisation with Pseudomonas aeruginosa, Pseudomonas putida and Bacillus megaterium yielded over 60% of plantlets free from P. capsici infection on roots. Curtobacterium luteum and B. megaterium recorded over 70% reduction of nematode population in soil with concomitant production of over 65% of nematode-free plantlets. Besides protecting the plants from the pathogens, the bacteria were also found to enhance the growth of rooted cuttings. The biocontrol potential of the above endophytic bacteria and their exploitation for disease management in the black pepper nursery are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号