首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The first cases of heart and skeletal muscle inflammation (HSMI), in Atlantic salmon Salmo salar were registered in 1999 in the Hitra/Fr?ya area of Norway. The disease has since spread south to Rogaland, i.e. the southernmost county with salmon farming in Norway. The disease outbreaks usually start 5 to 9 mo after release into seawater but may occur as early as 2 wk after sea release. The present study focuses on possible pathogens associated with HSMI. It was not possible to find any parasites or bacteria that could explain HSMI, and none of the well-known viruses (infectious salmon anaemia virus, Norwegian salmonid alphavirus, infectious pancreatic necrosis virus, Atlantic salmonid paramyxovirus) were consistently present. Use of transmission electron microscopy showed the presence of epitheliocystis agent in 3 of 4 farms included in this study, and several virus-like particles. Type I and Type II virus particles, previously described for salmon suffering from haemorrhagic smolt syndrome (HSS), and erythrocytic inclusion body syndrome (EIBS) virus were consistently present in salmon suffering from HSMI in all 4 farms included in this study. The 2 HSS viruses (Type I and Type II) were also cultured in Atlantic salmon kidney (ASK) cells from salmon suffering from HSMI. However, a causal relationship between the observed virus particles and HSMI remains to be demonstrated.  相似文献   

4.
Proliferative gill inflammation (PGI) is an important cause of loss in seawater-farmed Atlantic salmon in Norway. Several microbes have been associated with PGI, including the commonly but not exclusively observed inclusions (epitheliocysts) within the gill lamellae related to infection with 'Candidatus Piscichlamydia salmonis'. Atlantic salmon transferred in the spring of 2004 to 12 seawater farms situated in mid- and southwest Norway were sampled throughout that year. Outbreaks of PGI, as evaluated by clinical examination, histology, and mortality data, were diagnosed in 6 of 7 farms in southwest Norway but not in the 5 farms studied in mid-Norway. Generally, mortality started 3 to 5 mo after seawater transfer and outbreaks lasted at least 1 to 3 mo. 'Ca. P. salmonis' was detected by real-time PCR only in fish from PGI-affected farms and our results indicate an association between 'Ca. P. salmonis' load and PGI severity. Likewise, although widely distributed in all 12 farms studied, epitheliocyst prevalence and number per fish as observed by histology appears associated with PGI prevalence and severity. However, the occurrence of epitheliocysts showed no association with molecular detection of 'Ca. P. salmonis', suggesting that at least 1 other organism is responsible for many of the observed inclusions. A microsporidian, Desmozoon lepeophtherii, was identified at high prevalence regardless of fish and farm PGI status, but at higher loads in fish with PGI. Our results support a multifactorial etiology for PGI in which 'Ca. P. salmonis', an unidentified epitheliocyst agent, and the microsporidian are contributing causes. No evidence for the involvement of Atlantic salmon paramyxovirus in PGI development was identified in the present study. High water temperatures and ectoparasites probably exacerbated mortality.  相似文献   

5.
Proliferative gill inflammation (PGI) causes significant losses in farmed Atlantic salmon Salmo salar L. in Norway, especially during the first months following seawater transfer. The aetiology is apparently multifactorial, including infection with chlamydia-like bacteria and Atlantic salmon paramyxovirus (ASPV). In the present study, gills from diseased fish from 3 farms on the western coast of Norway were sampled. The pathological changes were briefly described and the aetiological significance of ASPV studied by immunofluorescent staining of cryosections and by immunohistochemistry on sections of formalin-fixed and paraffin-embedded tissue. The pathological changes were macroscopically characterized by palour of the gills, and histologically by inflammation, circulatory disturbances, cell death and epithelial cell proliferation. ASPV was demonstrated in fish from all farms studied, as immunostaining consistent with ASPV was obtained in lamellar epithelial and endothelial cells of pathologically altered tissues. It is concluded that ASPV is at least a contributing cause of PGI. As far as we know, this is the first demonstration of fish disease related to infection with a paramyxovirus.  相似文献   

6.
Atlantic salmon (Salmo salar L.) mariculture has been associated with epidemics of infectious diseases that threaten not only local production, but also wild fish coming into close proximity to marine pens and fish escaping from them. Heart and skeletal muscle inflammation (HSMI) is a frequently fatal disease of farmed Atlantic salmon. First recognized in one farm in Norway in 1999[1], HSMI was subsequently implicated in outbreaks in other farms in Norway and the United Kingdom[2]. Although pathology and disease transmission studies indicated an infectious basis, efforts to identify an agent were unsuccessful. Here we provide evidence that HSMI is associated with infection with piscine reovirus (PRV). PRV is a novel reovirus identified by unbiased high throughput DNA sequencing and a bioinformatics program focused on nucleotide frequency as well as sequence alignment and motif analyses. Formal implication of PRV in HSMI will require isolation in cell culture and fulfillment of Koch''s postulates, or prevention or modification of disease through use of specific drugs or vaccines. Nonetheless, as our data indicate that a causal relationship is plausible, measures must be taken to control PRV not only because it threatens domestic salmon production but also due to the potential for transmission to wild salmon populations.  相似文献   

7.
In Europe, 2 closely related alphaviruses (Togaviridae) are regarded as the causative agents of sleeping disease (SD) and salmon pancreas disease (SPD): SD virus (SDV) has been isolated from rainbow trout Oncorhynchus mykiss in France and the UK, while SPD virus (SPDV) has been isolated from salmon Salmo salar in Ireland and the UK. Farmed salmonids in western Norway also suffer from a disease called pancreas disease (PD), and this disease is also believed to be caused by an alphavirus. However, this virus has not yet been characterised at the molecular level. We have cultured a Norwegian salmonid alphavirus from moribund fishes diagnosed with cardiac myopathy syndrome (CMS) and fishes diagnosed with PD. The virus has also been found in salmon suffering from haemorrhagic smolt syndrome in the fresh water phase. The genomic organisation of the Norwegian salmonid alphavirus is identical to that in SPDV and SDV, and the nucleotide sequence similarity to the other 2 alphaviruses is 91.6 and 92.9%, respectively. Based on the pathological changes, host species and the nucleotide sequence, we suggest naming this virus Norwegian salmonid alphavirus (NSAV). Together with SPDV and SDV it constitutes a third subtype of salmonid alphavirus (SAV) species within the genus Alphavirus, family Togaviridae.  相似文献   

8.

Background

Cardiomyopathy syndrome (CMS) is a severe cardiac disease of Atlantic salmon (Salmo salar) recently associated with a double-stranded RNA virus, Piscine Myocarditis Virus (PMCV). The disease has been diagnosed in 75-85 farms in Norway each year over the last decade resulting in annual economic losses estimated at up to €9 million. Recently, we demonstrated that functional feeds led to a milder inflammatory response and reduced severity of heart lesions in salmon experimentally infected with Atlantic salmon reovirus, the causal agent of heart and skeletal muscle inflammation (HSMI). In the present study we employed a similar strategy to investigate the effects of functional feeds, with reduced lipid content and increased eicosapentaenoic acid levels, in controlling CMS in salmon after experimental infection with PMCV.

Results

Hepatic steatosis associated with CMS was significantly reduced over the time course of the infection in fish fed the functional feeds. Significant differences in immune and inflammatory responses and pathology in heart tissue were found in fish fed the different dietary treatments over the course of the infection. Specifically, fish fed the functional feeds showed a milder and delayed inflammatory response and, consequently, less severity of heart lesions at earlier and later stages after infection with PMCV. Decreasing levels of phosphatidylinositol in cell membranes combined with the increased expression of genes related with T-cell signalling pathways revealed new interactions between dietary lipid composition and the immune response in fish during viral infection. Dietary histidine supplementation did not significantly affect immune responses or levels of heart lesions.

Conclusions

Combined with the previous findings on HSMI, the results of the present study highlight the potential role of clinical nutrition in controlling inflammatory diseases in Atlantic salmon. In particular, dietary lipid content and fatty acid composition may have important immune-modulatory effects in Atlantic salmon that could be potentially beneficial in fish balancing the immune and tissue responses to viral infections.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-462) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
This report represents the first diagnosis of cardiomyopathy syndrome (CMS) in migrating, wild Atlantic salmon Salmo salar from 1 major river and off the coast of Norway. Previously, this disease has been diagnosed only in farmed Atlantic salmon. The possible significance of the disease in wild stocks of salmon is discussed.  相似文献   

11.
Heart and skeletal muscle inflammation (HSMI) is a disease that affects farmed Atlantic salmon Salmo salar L. several months after the fish have been transferred to seawater. Recently, a new virus called piscine reovirus (PRV) was identified in Atlantic salmon from an outbreak of HSMI and in experimentally challenged fish. PRV is associated with the development of HSMI, and has until now only been detected in Atlantic salmon. This study investigates whether the virus is also present in wild fish populations that may serve as vectors for the virus. The virus was found in few of the analyzed samples so there is probably a more complex relationship that involves several carriers and virus -reservoirs.  相似文献   

12.
The susceptibility and resistance of hatchery-reared salmon parr, native to the rivers Neva (U.S.S.R. Baltic Sea), Alta (northern Norway) and Lone (western Norway) (both eastern Atlantic Ocean), to Gyrodactylus salaris from Norway, was examined. The level of resistance to the parasite was assessed from counts, made on anaesthetized salmon, ofthe numbers of G. salaris after an initial experimental exposure (2 weeks) to G. salaris-infected salmon. Three experiments, all in water at c. 12° C, were carried out: (1) 50 Alta and 50 Neva salmon, initial mean parasite intensity c. 12; (2) 50 Lone and 50 Neva salmon, initial mean parasite intensity c. 60; (3) 10 Lone and 10 Neva salmon individually isolated, initial intensity one gravid G. salaris . In both the Norwegian salmon stocks, the G. salaris infrapopulations steadily increased during the experimental period of 5 weeks, in contrast to a prominent decline in the Neva salmon stock, after, respectively: (Exp. 1) week 3, average peak intensity 32.6; (Exp. 2) week 2, average peak intensity 58.7; and (Exp. 3) week 3, average peak intensity 6.3. The hatchery-reared Baltic Neva stock demonstrated both an innate and an acquired resistance towards G. salaris , in contrast to the highly susceptible, Norwegian Alta and Lone salmon stocks.  相似文献   

13.
The microsporidian Loma salmonae (Putz, Hoffman & Dunbar, 1965) Morrison & Sprague, 1981 has caused significant gill disease in Pacific salmon Oncorhynchus spp. Host specificity of the parasite was examined experimentally by per os challenge of selected salmonids and non-salmonids with infective chinook salmon O. tshawytscha gill material. Pink Oncorhynchus gorbuscha and chum salmon O. keta, brown Salmo trutta and brook trout Salvelinus fontinalis, and chinook salmon (controls) were positive, whereas Atlantic salmon Salmo salar and Arctic char Salvelinus alpinus were negative. In addition, no non-salmonids were susceptible to experimental exposure. Wild Pacific salmon species in British Columbia, Canada, were examined for L. salmonae during their freshwater life history stages (smolts, prespawning, spawning). All stages were infected, although infections in smolts were only detectable using a L. salmonae-specific PCR test. Many previous Loma spp. described from Oncorhychus spp. are likely L. salmonae based on host, parasite morphology, and site of infection.  相似文献   

14.
Heart and Skeletal Muscle Inflammation (HSMI), recently associated with a novel Atlantic salmon reovirus (ASRV), is currently one of the most prevalent inflammatory diseases in commercial Atlantic salmon farms in Norway. Mortality varies from low to 20%, but morbidity can be very high, reducing growth performance and causing considerable financial impact. Clinical symptoms, including myocarditis, myocardial and red skeletal muscle necrosis, correlate with the intensity of the inflammatory response. In the present study, the effects of two functional feeds (FF1 and FF2) were compared to a standard commercial reference feed (ST) in Atlantic salmon subjected to an ASRV challenge. The functional feeds had reduced levels of total lipid and digestible energy, and different levels and proportions of long-chain polyunsaturated fatty acids (LC-PUFA). The objective was to determine whether these feeds could provide effective protection by decreasing the inflammatory response associated with HSMI. Histopathology, viral load, fatty acid composition and gene expression of heart tissue were assessed over a period of 16 weeks post-infection with ASRV. The viral load and histopathology scores in heart tissue in response to ASRV infection were reduced in fish fed both functional feeds, with FF1 showing the greatest effect. Microarray hierarchical cluster analysis showed that the functional feeds greatly affected expression of inflammation/immune related genes over the course of the ASRV infection. Viral load correlated with up-regulation of pro-inflammatory genes at the early-mid stages of infection in fish fed the ST diet. Expression of inflammatory genes 16-weeks after ASRV challenge reflected the difference in efficacy between the functional feeds, with fish fed FF1 showing lower expression. Thus, severity of the lesions in heart tissue correlated with the intensity of the innate immune response and was associated with tissue fatty acid compositions. The present study demonstrated that dietary modulation through clinical nutrition had major influences on the development and severity of the response to ASRV infection in salmon. Thus, HSMI was reduced in fish fed the functional feeds, particularly FF1. The modulation of gene expression between fish fed the different feeds provided further insight into the molecular mechanisms and progression of the inflammatory and immune responses to ASRV infection in salmon.  相似文献   

15.
Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the pathological changes associated with the disease involve necrosis and an infiltration of inflammatory cells into different regions of the heart and skeletal muscle. The aim of this work was to characterize cardiac changes and inflammatory cell types associated with a clinical HSMI outbreak in Atlantic salmon using immunohistochemistry. Different immune cells and cardiac tissue responses associated with the disease were identified using different markers. The spectrum of inflammatory cells associated with the cardiac pathology consisted of mainly CD3(+) T lymphocytes, moderate numbers of macrophages and eosinophilic granulocytes. Proliferative cell nuclear antigen (PCNA) immuno-reaction identified significantly increased nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. Strong immunostaining was observed for major histocompatibility complex (MHC) class II in HSMI hearts. Although low in number, a few positive cells in diseased hearts were detected using the mature myeloid cell line granulocytes/monocytes antibody indicating more positive cells in diseased than non-diseased hearts. The recombinant tumor necrosis factor-α (TNFα) antibody identified stained macrophage-like cells and endothelial cells around lesions in addition to eosinophilic granular cells (EGCs). These findings suggested that the inflammatory response in diseased hearts comprised of mostly CD3(+) T lymphocytes and eosinophilic granular cells and hearts exhibited high cell turnover where DNA damage/repair might be the case (as identified by PCNA, caspase 3 and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) reactivity).  相似文献   

16.
The myxozoan parasite Ceratomyxa shasta infects salmonids causing ceratomyxosis, a disease elicited by proliferation of the parasite in the intestine. This parasite is endemic to the Pacific Northwest of North America and salmon and trout strains from endemic river basins show increased resistance to the parasite. It has been suggested that these resistant fish (i) exclude the parasite at the site of invasion and/or (ii) prevent establishment in the intestine. Using parasites pre-labeled with a fluorescent stain, carboxyfluorescein succinimidyl diacetate (CFSE), the gills were identified as the site of attachment of C. shasta in a susceptible fish strain. In situ hybridization (ISH) of histological sections was then used to describe the invasion of the parasites in the gill filaments. To investigate differences in the progress of infection between resistant and susceptible fish, a C. shasta-susceptible strain of rainbow trout (Oncorhynchus mykiss) and a C. shasta-resistant strain of Chinook salmon (Oncorhynchus tshawytscha) were sampled at consecutive time points following exposure at an endemic site. Using ISH in both species, the parasite was observed to migrate from the gill epithelium into the gill blood vessels where replication and release of parasite stages occurred. Quantitative PCR verified entry of the parasite into the blood. Parasite levels in blood increased 4 days p.i. and remained at a consistent level until the second week when parasite abundance increased further and coincided with host mortality. The timing of parasite replication and migration to the intestine were similar for both fish species. The field exposure dose was unexpectedly high and apparently overwhelmed the Chinook salmon’s defenses, as no evidence of resistance to parasite penetration into the gills or prevention of parasite establishment in the intestine was observed.  相似文献   

17.
Heart and Skeletal Muscle Inflammation (HSMI) is an emerging viral disease caused by a novel Atlantic salmon reovirus (ASRV) affecting farmed fish. Primary symptoms associated with HSMI include myocardial and skeletal muscle necrosis indicating a severe inflammatory process. Recently, we applied the concept of clinical nutrition to moderate the long-term inflammatory process associated with HSMI in salmon subjected to experimental ASRV challenge. The use of functional feeds with lower lipid (hence energy) content reduced the inflammatory response to ASRV infection and the severity of associated heart lesions. The aim of the present study was to elucidate possible mechanisms underpinning the observed effects of the functional feeds, focussing on eicosanoid and fatty acid metabolism in liver and head kidney. Here we show that liver was also a site for histopathological lesions in HSMI showing steatosis reflecting impaired lipid metabolism. This study is also the first to evaluate the expression of a suite of key genes involved in pathways relating diet and membrane phospholipid fatty acid compositions, and the inflammatory response after ASRV infection. The expression of hepatic Δ6 and Δ5 desaturases was higher in fish fed the functional feeds, potentially increasing their capacity for endogenous production and availability of anti-inflammatory EPA. Effects on mobilization of lipids and changes in the LC-PUFA composition of membrane phospholipids, along with significant changes in the expression of the genes related to eicosanoid pathways, showed the important role of the head kidney in inflammatory diseases caused by viral infections. The results from the present study suggest that clinical nutrition through functional feeding could be an effective complementary therapy for emerging salmon viral diseases associated with long-term inflammation.  相似文献   

18.
19.
Epitheliocystis, a disease characterised by cytoplasmic bacterial inclusions (cysts) in the gill and less commonly skin epithelial cells, has been reported in many marine and freshwater fish species and may be associated with mortality. Previously, molecular and ultrastructural analyses have exclusively associated members of the Chlamydiae with such inclusions. Here we investigated a population of farmed Atlantic salmon from the west coast of Norway displaying gill epitheliocystis. Although 'Candidatus Piscichlamydia salmonis', previously reported to be present in such cysts, was detected by PCR in most of the gill samples analysed, this bacterium was found to be a rare member of the gill microbiota, and not associated with the observed cysts as demonstrated by fluorescence in situ hybridization assays. The application of a broad range 16 S rRNA targeted PCR assay instead identified a novel betaproteobacterium as an abundant member of the gill microbiota. Fluorescence in situ hybridization demonstrated that this bacterium, tentatively classified as 'Candidatus Branchiomonas cysticola', was the cyst-forming agent in these samples. While histology and ultrastructure of 'Ca. B. cysticola' cysts revealed forms similar to the reticulate and intermediate bodies described in earlier reports from salmon in seawater, no elementary bodies typical of the chlamydial developmental cycle were observed. In conclusion, this study identified a novel agent of epitheliocystis in sea-farmed Atlantic salmon and demonstrated that these cysts can be caused by bacteria phylogenetically distinct from the Chlamydiae.  相似文献   

20.
Polymerase chain reaction (PCR) and microscopic examination of stained kidney sections were used to diagnose infections with the myxozoan parasite Parvicapsula minibicornis in maturing Fraser River salmon. In 2 series of collections, the parasite was detected in 109 of 406 migrating sockeye salmon Oncorhynchus nerka belonging to Early Stuart, Early Summer and Summer run-timing groups, mainly upper Fraser River stocks. However, the parasite was detected neither in fish at sea nor once they had migrated several 100 km upstream. Prevalence then increased to 95% or greater at the spawning grounds. Histological examination of kidney was less sensitive than PCR in detecting the parasite in salmon collected from the earliest sites in both collections found positive by PCR. Severity of infection was greatest at the spawning grounds. Development of infection in sockeye, measured by prevalence, severity or by the rate of false-negative histological diagnoses, appeared to be a useful estimate of in-river residence time. Prevalence and severity of infections in sequential samples of Harrison River and Weaver Creek sockeye stocks collected from the Harrison River indicated that more time had elapsed since parasite transmission than would be predicted based on migration distance alone. Pink salmon Oncorhynchus gorbuscha, coho salmon O. kisutch and chinook salmon O. tshawytscha were found to be infected with the parasite. Development of P. minibicornis in pink salmon was most similar to that in sockeye. Pink and coho salmon may be at risk to the pathological consequences of P. minibicornis infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号